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Recovery of Convex Hulls
from External Visibility Graphs
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Abstract

Although the internal visibility graph does not determine the convex hull of a
polygon, it is shown that the external visibility graph determines the hull uniquely,
with one exception. An O(n?logn) algorithm is presented for recovering the hull from
the external visibility graph when the hull has four or more vertices, the non-exceptional
case. The algorithm also identifies the exceptional case: when the hull is a triangle;
then which three vertices comprise the hull is underdetermined.

Further, it is shown that the internal and external visibility graphs together still
do not uniquely determine triangular hulls.

1 Introduction

The problem of finding a polygon that realizes a given visibility graph seems to be diffi-
cult [O’R87]. Progress has only been made by either restricting attention to a subclass of
polygons or a subclass of graphs, or by starting with more information than just the visi-
bility graph [O’R93]. In this paper we explore what can be reconstructed from the external
visibility graph (definition below). We show that the convex hull is uniquely determined by
the external visibility graph, except for one class of polygons.

2 Problem Definition

All polygons considered in this paper are simple polygons, which partition the plane into
a bounded interior, the polygon boundary consisting of n vertices and edges, and the un-
bounded exterior. We assume throughout that the vertices are in general position: no three
are collinear. The internal vertez visibility graph G(P) for a polygon P is an undirected,
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labeled graph, with a node for each vertex of P, and an arc iff the corresponding vertices are
internally visible to one another, in the sense that the line segment connecting the vertices
is nowhere exterior to P. Note that every edge of the polygon corresponds to an arc in
G1(P). The nodes are labeled with indices 0,1,2,...,n — 1 such that the corresponding ver-
tices form a counterclockwise (ccw) traversal of P’s boundary. The ezternal vertex visibility
graph Gg(P) is defined in the same manner, except that two vertices must be ezternally
visible to correspond to an arc: the line segment connecting them is nowhere interior to P.
Again every edge of P corresponds to an arc in Gg(P), and the nodes are labeled as in
G1(P). Note we are using improper visibility, in that grazing contact of a line of sight with
the polygon’s boundary does not block vision. Proper visibility can be quite different, but
with our assumption of general position, the only difference between proper and improper
visibility is whether the polygon edges are arcs of the graph.

We will abbreviate G;(P) and Gg(P) to Gy and Gg when the polygon P is clear from
the context.

2.1 History

The original reconstruction problem posed by Avis and ElGindy is: given Gy, construct a P
that realizes it. Note that because the graph is labeled, the Hamiltonian cycle representing
the boundary of P is known.

The questions explored in this paper are:

Given Gy, or Gg, or. both G; and Gg, for a polygon P, can the labels of the
vertices of the convex hull of P, H(P), be uniquely identified? .

We will first establish some notation before summarizing our answers.

2.2 Notation

H(P) (or just H) is the labeled cycle representing the convex hull of P. Throughout we
assume that the input graphs are visibility graphs of some (usually unknown) polygon. The
problem of recognizing visibility graphs is not directly considered. We reserve the term “arc”
for a graph edge (a,b), and use “edge” and “diagonal” for the polygon edge or diagonal ab.
We will use the symbol “=” as shorthand for “uniquely determines,” and “#” for “does
not uniquely determine.” Finally, we let n be the number of vertices of P and h the number
of vertices on H(P).

2.3 Summary of Results

Here are our answers to the above questions. In the cases where there is not unique deter-
mination of the hull, the number of different hulls compatible with the input is listed.

1. G; # H: ©(2") possibilities. -
2. Ge=>Hifh>3.
3. Gg 7 M if h = 3: Q(n) possibilities.
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4. G+ Gg # H if h = 3: Q(n) possibilities.

Throughout, our emphasis will be on the ideas and not on algorithm efficiency. Complete
proofs may be found in the full version of this paper [ELO93)].

3 Gi#H
See [ELO93].

4 Gg=>Hifh>3

This section presents the main result of this paper: Gg, the external visibility graph, uniquely
determines H for polygons with four or more vertices on their hulls.

4.1 Sketch of Ideas

The main idea behind the hull-identification algorithm is to first use Gg to construct a
triangulation of the exterior of P inside 7, and then identify hull edges as those edges that
do not support a triangle to one side (the exterior). The reason this approach fails when
h = 3 is that then a hull edge can support triangles to both sides: one in a “pocket,” and
- the other the hull itself. We now make these ideas more precise.

4.2 Definition of External Triangulation

A pocket of P is a polygon formed from a nonpolygon hull edge (the pocket lid) and the
chain of P connecting the endpoints inside the hull. If ab is a nonpolygon hull edge, then the
corresponding pocket is the polygon formed of the vertices (a,b,6—1,b—2,....a+2,a+1, a).
An ezternal triangulation of P is a (labeled) graph defined as the union of triangulations of
all the pockets, together with the hull edges that are also polygon edges.

4.3 Constructing a Triangulation

A key point is that knowledge of the Hamiltonian circuit representing the boundary of P
permits us to infer which arcs of G must map to crossing diagonals in any geometric realiza-
tion. A geometric realization (or just realization) of G is simply a polygon P whose external
visibility graph is Gg. Let Cfs, ?] represent the closed polygonal chain of the boundary of P
from s ccw to t, and let C(s,t) be same chain excluding s and ¢.

Lemma 4.1 Let (a,b) and (c,d) be two arcs of Gg, and assume without loss of generality
that the label indices satisfya <b, ¢ < d, and a < c. Then the diagonals ab and cd cross in
a geometric realization of Gg iffa< c < b < d.

The consequence of this lemma is that we can infer geometric crossing of diagonals in
any realization from topological crossing, which is captured in the lemma by the condition
on the index labels. This permits us to talk unambiguously of arcs of Gg to be crossing.
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Lemma 4.2 A mazimal set of non-crossing arcs in Gg(P) corresponds to an external tri-
angulation of P.

We will defer discussion of an algorithm for constructing a triangulation to Section 6.

4.4 Identifying Hull ‘Edges

The following lemma is the key to identifying which arcs of Gz must be hull edges. Say an
arc e = (a,b) supports a triangle in G if both endpoints of e are adjacent to some vertex c.
Say that e supports triangles to both sides if both endpoints of e are adjacent to ¢ and to d,
and (a,b) and (c,d) are crossing diagonals.

Lemma 4.3 For a polygon with h > 3,

1. polygon arc (a,a + 1) € Gg is a hull edge in any realization iff it does not support a
triangle in Gg.

2. nonpolygon arc (a,b) € Gg is a hull edge in any realization iff it does not support a
triangle in Gg to one side.

5 Polygons with triangular hulls

Lemma 4.3 provides an easy method for identifying arcs of Gg(P) that must be hull edges
in any realization if A > 3. But if h = 3, i.e., if the hull of P is a triangle, then in fact it is
not always possible to identify a hull edge from Gg. We will illustrate with an example this
later.

5.1 Distinguishing between h =3 and h > 3
Lemma 5.1 For a polygon P with h =3,

1. if polygon edge (a,a+1) € Gg is a hull edge of P, then it supports one triangle in Gg.

2. if nonpolygon edge (a,b) € GE is a hull edge, then it supports triangles to both sides in
Gg.

Lemmas 4.3 and 5.1 together yield a method for determining from Gg(P), whether A = 3,
as follows. If every polygon arc supports a triangle in G, and every nonpolygon arc supports
a triangle to either side, then it must be that h = 3. For if A > 3, a hull edge that did not
support a triangle to one side would have been found, since Lemma 4.3 is a necessary and
sufficient characterization. On the other hand, if there is an edge in G that does not support
a triangle to one side, Lemma 5.1 shows that h # 3, and therefore h > 3.

52 Gp#A Hifh=3
See [ELO93).
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6 Hull Algorithm

The algorithm for reconstructing the convex hull from the external visibility graph will now
be sketched. The algorithm has four main steps, as follows.

Algorithm Hull: Gg=HI1IFh>3

1. Find an external triangulation T of P from GE. O(n?logn)
2. Mark edges of T' supporting or not. O(n)

3. if every edge is marked supporting then h = 3 O(n)

4. else output as hull all unmarked edges - O(n)

We only discuss Step 1 here. A maximal set of noncrossing arcs can be found by selecting
an arc, discarding all arcs that cross it, and repeating this process until all arcs have been
selected or discarded.

Step 1: TRIANGULATION
G« G E
while not all arcs of G selected
Select arc (a,bd) € G.
for each vertex c
Delete from G all arcs (c, d) that cross (a,b).
Output T = G.

We summarize in a theorem.

Theorem 6.1 Algorithm Hull, in O(n%logn) time, identifies the unique convex hull of P
from Gg(P) in the case that P has more than 8 hull vertices, or detects that P has a
triangular hull without identifying its vertices.

7T Gi+GgAHifh=3

It is tempting to think that the addition of the internal visibility graph G; to the input
information might disambiguate the many possible hull choices left by knowing only G when
h = 3. Unfortunately G still leaves the hull underdetermined. Isolated examples of this
phenomenon were presented in [O’R90]. Here we present an example in Fig. 1 demonstrating
that there may be as many as Q(n) polygons with distinct triangular hulls simultaneously
realizing a given Gg and Gj.

8 Discussion

"The problem of finding a polygon P that realizes G; seems to be quite difficult. Since it
seems hard, two approaches have beee tried: restrict aspects of the problem until it becomes
tractable, or augment the input. Our contribution can be viewed as an instance of the latter
strategy: we have shown that the external visibility graph permits reconstructing the convex
hull of the polygon in most cases.

We close with three more specific open problems:
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Figure 1: Polygons with identical Gg and Gy. (a) H = (0,4,5). (b) H = (0,2,3).

1. Find a polygon that realizes given internal and external visibility graphs — an “easier”
reconstruction problem than Avis and ElGindy’s, but apparently still hard.

2. Characterize those polygons P for which G;(P) = Gg(P). That this class is nonempty
is demonstrated by a triangle. The question may be asked for both labeled and unla-
beled graphs.

3. More generally, characterize those polygons P that realize specific pairs of graphs G;
and Go: Gi(P) = G; and Gg(P) = Gs. For example, in Fig. 1, two different polygons
realizing particular pairs of graphs are shown. :
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