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1 Introduction

We consider the geometric optimization problem
of finding the maximum area axis-parallel rectan-
gle (MAAPR) in an n-vertex general polygon!. We
characterize the MAAPR in a general polygon and give
an O(na(n)log® n) time divide-and-conquer algorithm
for finding it, where a(n) is the slowly growing inverse
of Ackermann’s function. This is based on algorithms
we present for two other polygon classes: horizon-
tally (vertically) convex polygons, for which we give an
O(na(n)logn) time divide-and-conquer algorithm, and
orthogonally convex polygons?, for which we present an
O(na(n)) time algorithm. We also give a ©(n) time

algorithm for xy-monotone polygons®.

We prove a lower bound of time in Q(nlogn) for two
classes of polygons: self-intersecting polygons, and poly-
gons with holes. These contrast with the ©(n) results
achievable for the corresponding enclosure problems.

Our rectangle problem arises naturally in applications
where an inexpensive internal approximation to a poly-
gon is desired. It is useful, for example, in the industrial
problem of laying out apparel pattern pieces on cloth-
ing “markers” with minimal cloth waste [9, 10]. Despite
its practical importance, work on finding the MAAPR
has been restricted to rectilinear polygons [3, 8, 15] and,
recently, convex polygons [4].. Wood and Yap [15] note
that the MAAPR in a simple rectilinear polygon can be
found using an algorithm for the largest empty rectangle
problem,* which can be solved in O(nlog” n) time [2].
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Foundation.
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90-09272. _ :
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1A general polygon is a polygonal region in the plane with n
vertices and an arbitrary number of components and holes.

2 An orthogonally convex polygon is both horizontally and ver-
tically convex. This class contains the class of convex polygons.

3 A simple polygon consisting of two xy-monotone chains is an
xy-monotone polygon.

4Given a rectangle containing n points, find the largest area

For a constrained type of rectilinear polygon, Aggarwal
[3] gives a ©(n) time algorithm for finding the MAAPR
using the total monotonicity of the area matrix associ-
ated with the polygon. Amenta [4] has shown that the
MAAPR in a convex polygon can be found in linear time
by phrasing it as a convex programming problem. No
algorithm is known for finding the MAAPR in a general
polygon, nor has a lower bound tighter than Q(n) been
established. We present the first results for the general
case. _

Our paper is organized as follows. In Section 2 we
characterize the MAAPR for general polygons by con-
sidering different cases based on the number of corners
of the rectangle contacting the boundary of the polygon.
Based on this characterization we show, in Section 3,
how to reduce key subcases of the MAAPR problem to
finding the maximal element in an area matrix corre-
sponding to a pair of diagonally opposite xy-monotone
chains. Different visibility conditions imposed by the
polygon on the chains lead to different types of mono-
tone matrices. In Section 4 we give efficient solutions:
to all of the associated matrix problems by building
on the work of Klawe and Kleitman [7], and Aggarwal
[3]. This leads to the algorithmic results of Section 5:
©(n) time for xy-monotone polygons based on proper-
ties of totally monotone area matrices, O(na(n)) time
for orthogonally convex polygons based on completion
techniques for monotone area matrices, O(na(n)logn)
time for horizontally (vertically) convex polygons, and
O(na(n)log® n) time for the general case. The general
algorithm contains two levels of divide-and-conquer: the
highest level deals with horizontally convex polygons
and the lowest with orthogonally convex polygons.

In Section 6 we prove a lower bound of time in
Q(nlogn) for finding the MAAPR in a self-intersecting
polygon, in contrast to the ©(n) result achievable for
the corresponding enclosure problem. This establishes
a separation in the running time of the “dual prob-
lems” and demonstrates a limit to their duality. We

-also give a lower bound of time in Q(n logn) for finding

the MAAPR in a polygon with holes; this yields both an

subrectangle with sides parallel to those of the original rectangle
which contains none of the given points ([6, 11, 2]).



upper and lower bound for such polygons. Both proofs
involve a reduction from MAX-GAP.

2 Characterizing the MAAPR

In this section we characterize the MAAPR R contained
in a general polygon P by considering different cases
based on the number of corners of R on the bound-
ary of P, and outline a naive algorithm for finding the
MAAPR based on this characterization. Intuitively, if
R is inside P, it can “grow” until each of its four sides
is stopped by contact with the boundary of P. In order
to discuss contacts between R and P, we require the
notion of a reflez extreme vertex, introduced in [14].

Definition 2.1 A reflez verter v of P is a reflez ez-
ireme if there ezists a vertical or horizontal line of sup-
port of v that is interior to P.

Using this definition, we can characterize contacts be-
tween R and P as being of two types: 1) an edge of R
with a vertex of P, and 2) a vertex of R with an edge of
P. In the first case, a reflex extreme vertex of P touches
an edge of R and stops growth in one direction; we call
this a reflez contact. Two reflex contacts with adjacent
sides of R are adjacent reflex contacts which fix a corner
of R. In the second case, a corner of R touches an edge
of P, forming a sliding contact. '

By enumerating the sliding contacts between R and
P we derive the set of six cases given in Table 1.

Case || # corners of R on P min # reflex extreme
' vertices of P touching R
(sliding contacts) (reflex contacts)

0) i 0 4
) | 1 )
(2a) ] 2 opposite 0
(26) | 2 adjacent 1
(3) Il 3 0
(O] 4 0

Table 1: Characterization of MAAPR

Theorem 2.1 The mazimum area azis-parallel rectan-
gle R of a general polygon P conforms to one of the siz
cases given in Table 1.

Proof: R has either 0, 1, 2, 3, or 4 corners on the
boundary of P. For each possibility, we show that
the minimal number of reflex contacts determining the
MAAPR is given by the associated case(s) in Table 1.
We base our argument on the observation that R is max-
imal if no horizontal or vertical growth is possible. It is
sufficient to fix two opposite corners of R using a pair of
adjacent reflex contacts. It is also sufficient to fix only
one corner of R when the opposite corner has a sliding
contact with an edge of P. In this case R can be found
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by parameterizing the edge and maximizing a quadratic
in one variable; we denote this the 1-parameter problem.
Further relaxation is also possible: the problem of find-
ing R when both opposite corners have sliding contacts
with edges of P is a 2-parameter problem. In the full
version we prove the following claim which allows us
to reduce a 2-parameter problem to four 1-parameter
problems. Thus, R is uniquely determined in both 1
and 2-parameter problems.

Claim 2.2 Let e; = (u1,v1),e2 = (u2,v2) be two edges
of P, and assume that R is the MAAPR with opposite
corners on €1, ez, and no other contacts with P. Then,
at least one of these corners coincides with an endpoint
of an edge, i.c. is on one of uy,uz, vy, vs.

Now we analyze the different cases corresponding to
the number of sliding contacts. Case 0 has no sliding
contacts, so each corner of R must be fixed using re-
flex contacts. This requires four reflex contacts. Case 1
has one sliding contact. Adding only one reflex contact
allows R to grow in one direction, so two are neces-
sary. Two are sufficient to determine R, since this is
a l-parameter problem. In case 2, the two sliding con-
tacts can either be opposite or adjacent. The former
is case 2a, which is a 2-parameter problem, so the two
sliding contacts determine R. In the latter case, 2b, two
adjacent corners of R with sliding contacts on edges of
P share an edge e of R. We must add a reflex contact
with the edge opposite e to determine R. It is eas
ily shown that this reduces to a 1-parameter problem.
Case 3 is a constrained version of case 2a. The extra
constraints induced by the adjacent pairs of sliding con-
tacts reduce this to a 1-parameter problem. No reflex
contacts are required. In case 4, a set of four sliding
contacts associated with corners of R yields a system
of four equations in four unknowns, which determines a -
unique axis-parallel rectangle, if one exists. [ ]

Based on this characterization one can find the
MAAPR contained in a polygon by finding the MAAPR
under the constraints of each of the six cases and select-
ing the largest one.

Theorem 2.3 For a given set of vertez/edge contacts
between R and P from Table 1, the MAAPR can be
found in constant time.

Proof: In case 0, all four corners of the MAAPR are
uniquely determined by the four reflex extreme vertices.
In case 4, the system of four equations in four unknowns
can be solved in constant time. The remaining cases
rely on the 1-parameter problem, which can be solved
in constant time because it only involves maximizing
a quadratic in one variable. By the proof of Theo-
rem 2.1, case 1 is a l-parameter problem, and cases
2b and 3 reduce to a l-parameter problem. For case
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2, by Claim 2.2, a 2-parameter problem can be solved
by comparing the results of four 1-parameter problems,
and so can also be solved in constant time. Thus, all six
cases can be solved in constant time. [ ]

An interesting alternate constant-time solution to the
1-parameter problem is based on the following lemma,
which we prove in the full paper.

Lemma 2.4 Given a point p and a line L with slope s,
the MAAPR with one corner at p and opposite corner
at point ¢ on L has diagonal 5§, where the slope of g =
—s.

A naive MAAPR algorithm can use Theorem 2.3 and
supply it, in each case, all possible sets of candidate
edges of P. With O(n) preprocessing time to build hor-
izontal and vertical visibility maps [5], we can determine
in O(1) time, given a set of edges for a case, the pieces
of those edges that are candidates for determining the
MAAPR. We conclude:

Theorem 2.5 The MAAPR of an n-vertexr general
_ polygon can be found in O(n*) time.

In the remainder of the paper we show how to use
the MAAPR characterization combined with fast ma-
trix searching to develop a more sophisticated approach
to this problem.

3 MAAPR as a Matrix Problem

In this section we explore the relationship between find-
ing the MAAPR and the theory of monotone matri-
ces. We show that, for diagonally opposite xy-monotone
chains with certain visibility restrictions, the problem of
computing the MAAPR can be reduced to finding the
maximal element in partially monotone area matrices
we construct for the chains. We define below the sub-
classes of matrices we consider (see also Figure 1):

Definition 3.1 In a realnxm matriz M, let k(z) be the
indez of the leftmost column containing the mazimum
value in row i. M is monotone[l] if iy > iy implies
that k(i) > k(i2). M is totally monotone if all its
submatrices are monotone. (It is sufficient for all 2 x 2
submatrices to be monotone.)

Definition 3.2 A matriz M is monotone-single-
staircase[2] if there ezists one special set of entries S
such that any 2 x 2 minor that does not contain entries
from S is totally monotone; the boundary of S forms an
zy-monotone staircase inside M.

In Figure 1, the special set of entries is shaded; we call
them illegal entries. The figure distinguishes between
rising and falling staircase matrices. In addition, upper
and lower refer to the position of the illegal entries.

Faiing

Monotone Single Staircase Matrices

I‘mm - ilogal enties I

(%) Faling

Monotone Double Staircase Matrices

Figure 1: Types of .Stajrcase Matrices

Definition 3.3 A mairiz M is monotone-double-
staircase[2] if there ezist two special sets of entries Sy
and Sz such that any 2 x 2 minor that does not contain
entries from those sets is totally monotone; the bound-
ary of each set forms a staircase inside M and the two
sets of entries lie in diagonally opposite corners of M.

Given two polygonal chains C; and C, that are non-
intersecting and have the same slope direction, we asso-
ciate with them two area matrices Mc, c, and Mc, c,
as follows: in M¢, c, entry m;; corresponds to the area
of the MAAPR which has opposite corners on the i-th
vertex of C; and on the j-th edge of C;. Similarly,
in Mc, c, entry m;; corresponds to the area of the
MAAPR which has opposite corners on the i-th ver-
tex of C, and the j-th edge of C;. We calculate areas
as follows: if C; and C; both have negative slope then,
for p € C; and ¢ € Cs, the area of the associated rect-
angle is (pz — ¢z)(py — ¢y)- If both chains have positive
slope, the area has opposite sign. Note that this forces
the area to be positive if and only if p and q are rect-
angularly visible®. In the following theorems we reduce
the computation of the MAAPR to a matrix searching
problem.

5Two points p and g have rectangular visibility [12] if the in-
terior of the axis-parallel rectangle with diagonal $g does not in-
tersect C; or C,.



Theorem 3.1 Let C, and C; be two weakly L,-
visible polygonal chains. Then:

(i) The area of the MAAPR which has opposite corners
on Cy and C> is the mazimum of the mazimal elements
i Mc,,c, and Mc,c,.

(i1) Mc, c, and Mc, c, are both totally monotone ma-
trices.

Proof: (Sketch) The proof of (i) is based on the
MAAPR characterization (see Claim 2.2). When the
chains C; and C; are rectilinear the corners of all can-
didate rectangles are among the original set of vertices,
and the claim is trivially true. In the nonrectilinear
case, this does not hold. However, finding the area of
the MAAPR with opposite corners on edge e; of C; and
edge e; of C is a 2-parameter problem which reduces
to four 1-parameter problems.

The proof of (ii) consists of two steps. For both
steps assume, w.l.0.g., both chains have negative slope.
W.l.o.g. we prove (ii) for Mc, c,, so consider two ver-
tices v; and v on C and two edges ¢; and e;s on Cs.
The MAAPR for v; with e; has a vertex v;; on ¢;; call
v;; the MAAPR vertex for v;. Similarly, let the MAAPR
vertex of v; with e;: be v;;;, the MAAPR vertex of v;s
with e; be v;s;, and the MAAPR vertex of v;: with e; be
visj+. Denote the area of the rectangle with opposite cor-
ners on two vertices p and g by A(p, ¢). In the first step,
we use Lemma 2.4 to show that the vertices on C, have
the order: wv;;, visj, vij, and virj». In the second step,
we show Mc, c, is totally monotone by proving that the
2x 2 submatrix associated with vertices v;, v;» and edges
ej, ej+ is totally monotone. It suffices to show that:
A(vi, vijr) > A(vi, vij) = A(vir, virj1) > A(vir, vir3). To
show this we need the intermediate result: A(v, y Vi) >
A(v,,v, 1) = A(vir,vij0) > Avir, v; 1j), which is proven
using the relationships among the z and y coordinates
obtained from the ordering of vertices along the two
chains. We then take advantage of the MAAPRs to
show that: A(v;,v;;) > A(vi,virj) and A(vir,virjr) >
A(vir, vi). Combmmg these two MAAPR inequalities
with the intermediate result and using transitivity es-
tablishes (ii). ]

Consider now two diagonally opposite xy-monotone
chains C; and C; of an orthogonally convex polygon.
We must take into account the other pair of chains, be-
cause they can block visibility and ruin the total mono-
tonicity of the area matrices by forcing entries to become
illegal. For this case we show:

Theorem 3.2 Let Cy and C; be two diagonally oppo-
site zy-monotone chains of an orthogonally convez poly-
gon. Then:

(i) The area of the MAAPR which has opposite corners
on Cy and C; is the mazimum of the mazimal elements
i Mc,,c, and Mc, c,.
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(i) Mc,,c, and Mc, ¢, are both monotone rising double
statrcase matrices.

Proof: (Sketch) Let b,t,l,r denote the highest, low-
est, leftmost, and rightmost points on P, respectively.
We consider w.l.o.g. the opposite chains It and br. The
proof of (i) is again based on Claim 2.2. To establish
(i), form the rectangle R; with ¢ and r as opposite cor-
ners. Projecting points from It horizontally onto R;,
and points from br vertically onto R;, defines a rectan-
gular grid on R;. By following ¢r across and down the
grid we can determine how chain ¢r restricts the rect-

- angular visibility of chain It with chain br. This yields

a monotone upper rising single staircase matrix corre-
sponding to the effect of ¢». An analogous monotone
lower rising single staircase matrix can be constructed
corresponding to the effect of Ib. It is easily shown that
the intersection® of the legal entries of a monotone up-
per rising single staircase matrix and a monotone lower
rising single staircase matrix is a monotone rising dou-
ble staircase matrix. ]

4 Solving the Matrix Problem

“In this section we show how to efficiently compute the

maximal elements in various classes of monotone and
partially monotone matrices. The main result of this
section is Lemma 4.3, which involves a monotone rising
double staircase matrix. This result forms the basis of
the algorithms presented in Section 5. Lemma 4.3 relies
on the other results cited below, and on matrix com-
pletion techniques. Completion returns a legal value in-
stead of an illegal one during a matrix element query
without affecting the maximum value in the matrix.
That is, given a non-totally monotone matrix in interval
form (i.e. as a set of n intervals, each corresponding to
the connected set of legal entries in a row), we can oper-
ate on it as if it were totally monotone. Completion via
increasing and decreasing sequences appears in [7]. Here

- we introduce completion by propagation, which involves

propagating the values at the endpoints of a legal inter-
val to the left and right. Propagation does not introduce
new row minima or maxima, an advantage it has over
completion via increasing or decreasing sequences. De-
tails on completing different types of matrices appear in
the full paper.

Lemma 4.1 ([1]) If any entry of a totally monotone
matriz of sizem x n can be computed in constant time,
then the row-mazimum problem for this matriz can be
solved in ©(m + n) time.

SA matrix M is the intersection of M; and M if the set of
legal entries of M is the intersection of the legal entries of M; and
M.
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Lemma 4.2 ([7]) If any eniry of a monotone single
staircase matriz of size n x m can be computed in con-
stant time, then the row-mazimum problem for this ma-
triz can be solved in O(na(m) + m) time.

Lemma 4.3 Given a monotone rising double staircase
matriz in interval form, the row-mazimum problem for
this matriz can be solved in O(na(m) + m) time.

Proof: (Sketch) The matrix is the intersection of the
legal entries of a monotone upper rising single staircase
matrix and a monotone lower rising single staircase
matrix. Completing the upper left portion of the matrix
via propagation transforms it into a monotone upper
rising single staircase matrix, whose maximum element
can be found in O(na(m) + m) time via Lemma 4.2. ®

5 Finding the MAAPR

In this section we use the results of the previous sec-
tions to derive efficient algorithms for computing the
MAAPR in different classes of n-vertex polygons. We
use the characterization results of Section 2 to reduce
the MAAPR problem to the corresponding matrix prob-
lems discussed in Section 3 and then use the results of
Section 4 to give the computational bounds. We first
present our results for subclasses of polygons, leading to
the general result in Theorem 5.4. For general polygons
we use two levels of divide-and-conquer, which require
finding the MAAPR in an orthogonally convex polygon
at the lowest level. This follows the divide-and-conquer

approach used by McKenna and O’Rourke [8] to find the

largest axis parallel rectangle in a rectilinear polygon.
They obtain a rectilinear orthogonally convex: polygon
at the lowest level. However, they find the largest rect-
angle in this polygon in O(nlog®n) time, whereas we
solve the problem for orthogonally convex polygons in
O(na(n)logn) time.

Theorem 5.1 The MAAPR i;: an zy-monotone poly-
gon can be found in time in O(n).

The proof follows immediately from Theorem 3.1 and
Lemma 4.1.

Theorem 5.2 The MAAPR in an orthogonally convez
polygon can be found in O(na(n)) time.

Proof: (Sketch) In the first part of the proof we show
that the MAAPR in an orthogonally convex polygon P
is either of type 2a, 3, or 4. We then show that case 2a
can be solved in O(na(n)) time and cases 3 and 4 can
be solved in linear time.

In case 2a, the boundary of P can be partitioned,
in linear time, into four xy-monotone polygonal chains.
Now the problem can be reduced to an application of

Theorem 3.2 and Lemma 4.3. Note that, in the proof
of Theorem 3.2, a projected zy-monotone chain cuts

‘through the rectangular grid, intersecting a linear num-

ber of rectangles. By following the chain across (and
down) the grid, we can, in linear time, determine how
it restricts the rectangular visibility. For each pair of
diagonally opposite chains two monotone rising double
staircase matrices are produced, which together form a
monotone rising double staircase matrix. Therefore, we
can solve case 2a by Lemma 4.3 in time in O(na(n)).

In cases 3 and 4, the proof rests on the fact that
we can, in linear time, obtain horizontal and vertical
visibility maps, then check for 3 or 4 vertices of R on
P in linear time using a sweep algorithm. Two sweeps
in y (top-down and bottom-up) suffice to solve cases. 3
and 4, since, in both cases, either the top or bottom
corners of R are on edges of P. Since the four chains
are naturally ordered in z and y, no sorting is required.
|

Theorem 5.3 The MAAPR in a horizontally (or ver-
tically) convez polygon can be found in O(na(n)logn)
time.

Proof: (Sketch) W.lo.g. we treat the horizontally
convex case. We use a divide-and-conquer algorithm
which partitions the vertices of the polygon P using a
horizontal line L into two sets of roughly equal size.
Suppose L is partitioned into k pieces Ly, Ls,...,Li
by the polygon. The merge step requires that we find
the MAAPR intersecting L;,1 < ¢ < k. For a given
L;, we denote this Ry. We denote the largest poly-
gon containing L; that is monotone with respect to
L; by V. V is orthogonally convex. We prove in
the full paper that Ry C V, that V has O(n) ver-
tices, and it can be constructed in ©(n) time. Now
we find the MAAPR in V, which, by Theorem 5.2 can
be done in O(na(n)) time. This yields a recurrence of
the form T1(n) = T1(n/2) + O(na(n)), which gives an
O(na(n)logn) algorithm for finding the MAAPR of P.
]

Theorem 5.4 The MAAPR in a general polygon can
be found in O(na(n)log?® n) time.

Proof: (Sketch) The algorithm uses two phases of
divide-and-conquer. The first partitions with a verti-
cal line. Its merge step requires finding the MAAPR in
a horizontally convex polygon, which, by Theorem 5.3
can be done in O(na(n) logn) time. We have the recur-
rence: Ty(n) = To(n/2) + O(na(n)logn), which gives
O(na(n)log? n). |

6 Lower Bounds

We prove a lower bound of time in Q(nlogn) for find-
ing the MAAPR in a self-intersecting polygon, and for



polygons with holes”. This contrasts with the ©(n) re-
sult achievable for the corresponding enclosure problem,
thus establishing a separation in the running time of
these two dual problems and demonstrating a limit to
their duality®.

L | |
5 10 15 20 25 30

Figure 2: Rectilinear polygon constructed for input =
10, 5, 30, 25

Theorem 6.1 Finding the MAAPR in an n-vertex
self-intersecting polygon requires time in Q(nlogn) in
both the linear and algebraic decision tree models.

Proof: (Sketch) We reduce the MAX-GAP problem?®
[3] to the MAAPR problem for self-intersecting rectilin-
ear polygons. Consider an instance of MAX-GAP: given
a set of n real numbers z;, zo, ..., z,,, we must find the
maximum difference between two consecutive numbers
in the sorted list . We construct from this set, in lin-
ear time, a self-intersecting rectilinear polygon of unit
height as follows: each z; in the sequence corresponds
to a rectangle r;, = [(1,0),(z1,1), (2i,1), (zi,0)]. We
start the construction from (z;,0), and complete the
degenerate rectangle r1, then constructing r, ..., 7, (as
shown in Figure 2). This construction results in a self-
intersecting polygon, with the property that the area of
the MAAPR included in it is the solution to the cor-
responding MAX-GAP problem, thus proving the the-
orem. |

Theorem 6.2 Finding the MAAPR in an n-vertex
polygon with holes requires time in Q(nlogn) in both
the linear and algebraic decision tree models.

The proof involves a reduction from MAX-GAP, and is
omitted.

"This result was suggested by Binhai Zhu, and is similar to
the proof provided by McKenna and O'Rourke [8] that finding
the largest axis-parallel rectangle in a rectilinear polygon with
holes requires Q(nlogn) time.

81t is interesting to note that the dual problems of largest
empty circle and smallest enclosing circle for a set of points also
have different lower bounds. The largest empty circle can be
constructed in ©(nlogn) time, and the smallest enclosing circle
can be found in ©(n) time [13).

®In both the linear and algebraic decision tree models (if not
enhanced to include floor and ceiling functions), MAX-GAP has
a lower bound of Q(nlogn).

327

Acknowledgments

The authors gratefully acknowledge the work of Binhai
Zhu on the lower bound result for self-intersecting poly-
gons. We are also grateful for the helpful comments
made by Alok Aggarwal, Pankaj Agarwal, Zhenyu Li
and Marios Mavronicolas, and background information
provided by David Dobkin and Joseph O’Rourke.

References

[1] A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, and R. Wilber.
Geometric applications of a matrix-searching algorithm. Al-
gorithmica, 2:195-208, 1987.

[2] A. Aggarwal and S. Suri. Fast Algorithms for Computing the
Largest Empty Rectangle. In Proceedings of the $rd ACM
Symposium on Computational Geometry, pages 278 — 290,
1987.

[3] A. Aggarwal and J. Wein. Computat:onal Geometry Lecture
Notes for MIT 18.409. 1988.

[4] N. Amenta. Largest Volume Box is Convex Programming.
private communication, 1992.

[5] B. Chazelle. Triangulating a Simple Polygon in Linear Time.
In Proceedings of the Thirty-First Annual Symposizum on
Foundations of Computer Science, pages.220-230, 1990.

[6] B. Chazelle, R.L. Drysdale III, and D.T. Lee. Computing
the largest empty rectangle. SIAM J. Comput., 15:300-315,
1986.

[7] M. M. Klawe and D. J. Kleitman. An Almost Linear Time
Algorithm for Generalized Matrix Searching. SIAM Journal
of Discrete Mathematics, 3(1):81-97, 1990.

[8] M. McKenna, J. O'Rourke, and S. Suri. Finding the largest
rectangle in an orthogonal polygon. In Proceedings of the
23rd Allerton Conference on Communication, Ctmtrol and
Computing, pages 486-495, 1985.

[9] V. Milenkovic, K. Daniels, and Z. Li. Automatic Marker

Making. In Proceedings of the Third Canadian Conference
on Computational Geometry, 1991.

[10] V. Milenkovic, K. Daniels, and Z. Li. Placement and Com-
paction of Nonconvex Polygons for Clothing Manufacture. In
Proceedings of the Fourth Canadian Conference on Compu-
tational Geometry, 1992.

[11] A. Naamad, W.L. Hsu, and D.T. Lee. On maximum empty
rectangle problem. Discrete Appl. Math., 8:267-277,1984.

[12] M.H. Overmars and D. Wood. On rectangular visibility. J.
Algorithms, 9:372-390, 1988.

(13] F. Preparata and M. Shamos. Computational Geomeiry: An
Introduction. Springer-Verlag, New York, 1985.

[14] S. Schuierer, G.J. E. Rawlins, and D. Wood. A generalization
of staircase visibility. In Proceedings of the §rd Canadian
Conf. Comput. Geom., pages 96-99, 1991.

[15] D. Wood and C. K. Yap. The orthogonal convex skull prob-
lem. Discrete Computational Geometry, 3:349-365, 1988.



