370

A Note on Generalizations of Chew’s Algorithm for the Voronoi
Diagram of a Convex Polygon

Rolf Klein Andrzej Lingas
FernUniversitat Hagen Lund University

Abstract

We present linear-time generalizations of Chew’s randomized algorithm for the Voronoi diagram of
a convex polygon to include the convex hull of certain polygons in 3-space and the Voronoi diagram of
monotone line segment sets in the plane.

1 Introduction

The Voronoi diagram and its dual, the Delaunay triangulation, belong to the most useful structures in
computational geometry, see [2] and [12] . Computing the diagram of n points in the Euclidean plane is
well known to have ©(nlogn) time-complexity. But since the Voronoi diagram is so useful it is natural to
ask if faster algorithms are available for special site configurations.

In 1987, Aggarwal, Guibas, Saxe, and Shor [1] derrived a linear-time method for computing the convex
hull of polygons in 3-space having a convex projection on a 2-dimensional hyperplane. As a corollary they
obtained a linear-time upper bound for the problem of computing the Voronoi diagram of the vertices of a
convex polygon. They also claimed that their method for the convex hull works for more general polygons
in 3-space. Djidjev and Lingas [5] showed their claim yields also a linear-time upper bound on computing
the Voronoi diagram of the vertices of a monotone histogram (i. e. for sites sorted by their z-coordinates
that have, in this order, monotone y-coordinates). On the other hand, the latter authors showed that it
takes time (n log n) to compute the Voronoi diagram of the vertices of a non-monotone histogram (i. e. of
a set of sites sorted by one coordinate.)

The aforementioned method of Aggarwal et al. is not complicated algorithmically. However it is quite
non-trivial to follow and also it seems to involve large constants. On the other hand, already in 1986 Chew
presented an extremely simple linear-time randomized algorithm for the Voronoi diagram of a convex polygon
[3]. About 1990, Seidel showed a very simple complexity analysis of Chew’s algorithm as an example of the
so called backward analysis [14]. In 1991, Devillers presented an O(nlog" n)-time randomized algorithm for
- the so called skeleton of a simple polygon, i.e. the Voronoi diagram of a simple polygon where the edges
of the polygon are sites [4]. In 1992, Klein and Lingas presented a linear-time randomized algorithm for
the so called bounded Voronoi diagram of a simple polygon [8]. Their algorithm combines Chew’s idea
with polygon decomposition and Voronoi diagram merging techniques. Another generalization has been
mentioned by Rasch [13] who observed that even an abstract Voronoi diagram [10] can be constructed in
linear time, by a randomized algorithm, if, for all subsets of point sites, the diagram has the shape of a tree
and if the order of regions ”at infinity” is given. In a forthcoming paper [11] the authors are presenting a
deterministic linear algorithm for this task. Also, Yap has considered the generalization of the linear-time
deterministic method due to Aggarwal et al. to inlude a convex set of points and circural segments [15].

In this note first we observe that Chew’s algorithm can be easily generalized to include computing the
convex hull of the polygons in 3-space that are subject of the method of Aggarwal et al and its generalization.
In this way we obtain a simple linear-time randomized algorithm for the Voronoi diagram of any point
sequence for which the method of Aggarwal et al and its generalization imply a linear-time upper bound
(e.g. for monotone histograms). In the second part of the note, we directly generalize Chew’s algorithm to
include monotone sequence of straight-line segment sites (avoiding the reduction to the convex hull problem
in 3-space). In result we obtain the first linear expected-time algorithm for the above problem.

371
2 The generalization of Chew’s algorithm in 3-space

Guibas and Stolfi defined the so called lifting mapping p of the Ozy plane into E3 by u(z,y) — (z,y,z%+y?)

[7).

Fact 2.1 (see [6]) Let S be a finite set of points in the XY plane. The perpendicular projections of the edges
of the lower part of the convez hull of u(S) on the XY plane are the edges of the Delaunay triangulation of
S. The analogous correspondance holds between the edges of the upper part of the convez hull of u(S) and
the edges of the so called furthest point-site triangulation. Given the convez hull of u(S), we can compute
the Delaunay triangulation of S and the furthest point Delaunay triangulation of S in linear time.

Aggarvsfal et al. used the above fact to derive their linear upper bound on the time needed to construct
the Voronoi diagram of the vertices of a convex polygon Q by proving that the convex hull of 4(Q) can be
constructed in linear time [1]. In fact, they also claimed the following.

Claim 2.1 [1] Let P be a polygon (py,...,p,) in E®. Suppose that for each edge of any sdbpolygon P’ of P
given by a subsequence of (py,...,pn) there ezists a plane that contains the edge and leaves all other vertices
of P' in the same open half-space. The convez hull of the vertices of P can be constructed in time O(n).

Unfortunately, the proof of Fact 2.1 doesn’t seem to be a straight-forward generalization of the convex case
where the fact that the dual of the lower hull is a tree is used. Also, the algorithm due to Aggarwal et al. is
rather conceptually involved. On the other hand, the convex hull of P can be constructed by the following,
extremely simple algorithm. It can be seen as a natural generalization of Chew’s randomized algorithm for
the Delaunay triangulation of a convex polygon [3].

Algorithm 1

Input: A polygon P in space (with no four co-planar vertices) satisfying the assumptions from Claim 6.1.
Output: The convex hull CH(P) of P.

1. If P has only three vertices then set CH(P) to P;

2. If P has more than three vertices then pick a vertex g of P randomly, let p and r be its two neighboring
vertices, and let P’ be the polygon in space resulting from replacing the edges (p,), (¢,7) with (p,r);

3. Recursively compute the convex hull CH(P') of P’;
4. Transform CH(P') to CH(P)

Lemma 2.1 The transformation of C H(P') into CH(P) in Step 4 of Algorithm 1 can be done in time O(a)
where a is the number of edges of C H(P) incident to q. '

Proof: By the assumptions on P, (p,r) is an edge of CH(P') and (p,q) and (g,r) are edges of CH(P).
Also, g cannot lie inside CH(P'). Let D be the set of facets of CH(P’) that are not facets of CH(P) (i.e.
facets visible from ¢.) Observe that the straight-line dual to D is a connected graph (a tree). Also, at least
one of the two facets adjacent to the edge (p,r) is in D. Therefore we can find D on CH(P') as follows.
First for each facet f adjacent to (p,r) in CH(P') we test on which side of f the vertex v lies. In this way
we can insert at least one facet in D. Then, for each facet f of C H(P’) that is adjacent to a facet already
inserted into D and has not been yet tested we analogously determine the membership of f in D. After that
we remove all the edges in C H(P') between facets in D and for each vertex w of a facet in D we add the
edge (g, w) to obtain CH(P). As D can be regarded as a planar graph and each face in D is triangular by
our assumptions on P, the total work done to construct C H(P) is proportional to the number of vertices
of D, which is O(a). O

372

Theorem 2.2 Algorithm 1 constructs the convez hull of P in linear ezpected time.

Proof: Step 1 takes a constant time. To implement Step 2 in a constant time we keep a linear array
A indexed by vertex numbers. An entry A(s) is marked as passive if the vertex v; doesn’t occur in the
current subpolygon P’. Otherwise two pointers to the two vertices adjacent to v; in P’ are kept in A(:).
Assume for a moment that no more than half of the elements of A are passive. To choose randomly ¢,
a logarithmic number of random bits is used. If the corresponding entry is passive, a new logarithmic
sequence of random bits is generated etc. By our temporary assumption, the expected number of trials
in Step 2 until an appropriate g is found is < }¥2, 2‘, = O(1). Thus, Step 2 can be implemented in ex-
pected constant time then. When half of the enties in A become passive, they are removed and the array is
shrunk. The remaining “active” entries become reindexed appropriately. The above operation takes O(n)
time, and totally throughout the algorithm also 2, & = O(n) time. Step 4 can be done in time O(a)
by Lemma 2.1. Since CH(P) can be regarded as a planar graph, and ¢ is randomly choosen, the expected
value of a is O(1). Since all steps in Algorithm 1 but for the recursive computation of V B(P') take a con-
stant expected time and P’ has one less vertex than P, the whole algorithm runs in a linear expected time. O

In analogy to the corollaries from Claim 6.1 derived via Fact 6.1 in [1, 5], we obtain the following corollaries
from Theorem 2.2.

Corollary 2.3 There are simple algorithms with linear ezpected running-time for constructing:

(i) the Delaunay triangulation or the Voronoi diagram of a convez polygon or a monotone histogram (with
no four vertices co-cicular);

(ii) the intersection of the Voronoi diagram of a finite set of points (in general posztwn), contained in the
left half-plane and sorted by their Y coordinates, with the right half-plane.

Corollary 2.4 The Voronoi diagram of a finite set of point sites (in general position) can be updated after
deleting a single site in ezpected time proportional to the number of boundary edges of the region of the site.

3 The direct generalization of Chew’s algorithm in the plane

The conditions stated in Claim 6.1 assumed in Aggarwal et al’s method and Algorithm 1 translate into the
plane via Fact 2.1 as follows. '

Lemma 3.1 Let po, p2, ---., Pn1 be a sequence of points in the plane. The following conditions are equiva-
lent:

(i) The sequence under the p mapping forms a polygon in space satisfying the requirements stated in Claim
2.1.

(ii) For any subsequence pi,, Piy, -...,Pi, Of the sequence and I = 1,...,k — 1, (Di, Piyy (moas)) S G edge
of either the Delaunay triangulation of the subsequence or the furthest-site Delaunay triangulation of the
subsequence.

A generalization of the method of Aggarwal et al. or of Algorithm 1 and the above relationship to include
more general form of sites, e.g. line segments, is technically not easy. For this reason it seems worthy to
look for a direct generalization of Chew’s algorithm on the plane that could include both more general sites
and also the non-necessarily convex point configuration for which the convex hull methods work.

In fact, our direct algorithm works for line segment sites and could be easily extended to include more
general form of sites. A point site is a special, degenerate case of a line segment site. The Voronoi diagram
of a set of line segments is sometimes called skeleton [2]. The notion of Delaunay triangulation can be
generalized to include line segments, for example, as follows.

Definition 2.1 The Delaunay triangulation Del(S) of a set S of disjoint line-segments is the straight-line
dual to the Voronoi diagram of S where the vertez corresponding to the region of a line segment s is the
middle point of s.

Our randomized algorithm for the Voronoi diagram of a planar line segment set assumes the so called search
supporting function implied by conditions similar to (ii).

373

Definition 2.2 Let S be a finite set of line segments in the plane. A search supporting function for S isa
function f from 2% x S to (S x S) U {blank} defined for any U C S as follows:

1. for at least a constant fraction of u € U f1(U,u) is an edge of Del(U — {u}) such that at least a
fragment of the corresponding edge of Vor(U — {u}) doesn’t occur in Vor(U);

2. for the remaining u in U, f(U,u) = blank.

Algorithm 2

Input: A S of n disjoint line segments in the plane, a procedure for computing a search supporting function
for S.
Output: Vor(S) and Del(S).

1. If S has no more than three line segments then compute Vor(S) and Del(S) directly;
2. If S has more than three line segments then pick a segment ¢ in S randomly, and set S’ to S — {q}.

3. Recursively compute Vor(S’) and Del(S") keeping pointers between the corresponding edges of Vor(S")
and Del(S");

4. Compute f(U,u); if f(U,‘u) = blank go to Step 2;
5. Transform Vor(S") and Del(S’) to Vor(S) and Del(S) respectively.

Theorem 3.2 Let S be a set of n disjoint line segments in the plane, and let f be a search supporting
function for S. Suppose that for any U C S, and u in U, the time of computing f(U,u) is not greater than
t(n). Algorithm 2 computes the Voronoi diagram of S in (ezpected) O(t(n)n) time.

Proof: Again, we should show that the transformation of Step 4 can be done in linear expected time.
Let f(U,u) = (v,w). By Step 3, we can compute the common boundary t of the regions of v and w in
Vor(U — {u}) in constant time. By the properties of f(U,u), t or at least a fragment of ¢ will be covered
by the region of u in Vor(U). Compute Vor({v,u,w}) (clearly in constant time). If the bisectors of v and
u and the bisector of u and w in Vor({v,u,w}) touch each other at a point of ¢ then we can directly start
building the boundary of the region of u in Vor(U) (in other words merging Vor(u) with Vor(U — {u}))
following the two bisecors into opposite directions from the touching point in a standard way [9]. Otherwise
the bisector of v and u intersect the boundary of the region of v in Vor(U — {u}) or the bisector of u and w
intersects the boundary of the region of w in Vor(U — {u}) such that the set B of all boundary edges of the
respective region between ¢ and the intersection point forms a chain covered by the region of u in Vor(U).
We can find such an intersection in time O(#B) by alternating scan of the boundaries of the regions of u
and w in Vor(U — {u}) starting from ¢ in the two opposite directions on each boundary. In each phase of the
scan we advance each of the four scanned chains by one boundary edge if such an intersection hasn’t been
found yet and the respective chain doesn’t end with an infinite edge. Once such an intersection is found we
can start building the boundary of the region of u in Vor(U) in the standard way as in the first simpler case.
The building takes time constantly bounded by the number n(u) of the regions having a common boundary
with the region of u in Vor(U). Finding the intersection also takes time O(n(u)) since each edge in B corre-
sponds to a different region having a common boundary with the region of u in Vor(U) by the connectivity
of the regions. While creating new region boundaries and removing some of the old ones during the trans-
formation of Vor(U") into Vor(U) we correspondingly update Del(U) in time O(n(u)). By the planarity of
Vor(U) and the random choice of u, n(u) has expected value O(1). Now to obtain the thesis it remains to ob-
serve that the expected number of trials until an u for which f(U,u) # blank is O(1) by our assumptions. [

By using the following lemma we can apply the above theorem to monotone line segment chains.

Lemma 3.3 Let s, s3,s, be a sequence of disjoint line segments which induces a monotone polygonal
chain. The partial function f defined for any subsequence U = Siyy---Siy, and s;, where | = 2,....k—1 by
F(U,u) = (si,_,, $ir,,) yields a search supporting function for the sequence.

374

Proof: We may assume without loss of generality that the Y-coordinates of the line segments in the sequence
monotonously grow with respect to the X-coordinate. Clearly the subsequence and the sub-subsequence
have also the above property. Let I = 2,..., k— 1. Consider the middle m of the line segment s connecting the
right endpoint of s;,_; to the left endpoint of s;,,,. By the monotonicity of of the sub-subsequence s;, ,...s,_,,
Sijy1r-Si, and the disjointness of its elements the regions of s;_, and s;,,, in the Voronoi diagram of the
sub-subsequence have acommon boundary t passing through m. Thus, the edge (s;,_,, si,,,) is in the Delau-
nay triangulation of the sub-subsequence. Again by the monotonicity and disjointness of the subsequence
Siy,.--Si,, the segment s;, is closer to m than any other segment in the subsequence. Hence, at least a part
of t has to disappear in the Voronoi diagram of the subsequence. Thus, the partial function specified in the
thesis yields a search supporting function. a

Combing Theorem 3.2 with Lemma 3.3 we obtain our main application result.

Theorem 3.4 Let S be a monotone finite sequence of disjoint line segments. The Voronoi diagram of S
- can be built in expected linear time.

Proof: A search supporting function for the sequence is a trivial extension of the function f(U,u) given in
Lemma 3.3. The subsequence U — {u} can be recursively chained during the performance of Algorithm 2.
Therefore, the search supporting function can be computed in constant time. It remains to apply Theorem
3.2 O

References

[1] A. Aggarwal, L.J. Guibas, J. Saxe, and P.W. Shor. A Linear-Time Algorithm for Computing the Voronoi
Diagram of a Convex Polygon. Discrete and Computational Geometry 2, 1987, Springer Verlag.

[2] F. Aurenhammer. Voronoi Diagrams—A Survey. Tech. Rep., Graz Technical University, 1988.
[3] P. Chew. Building Voronoi Diagrams for Convex Polygons in Linear Expected Time. Manuscript (1986).

[4] O. Devillers. Randomization yields simple O(nlog+n) algorithms for difficult Q(n) problems. International
Journal of Computational Geometry and Applications, Vol2, Nol (1992), pp. 97-111

[5] H. Djidjev and A. Lingas. On Computing the Voronoi Diagram for Restricted Planar Figures. Proc. WADS’91,
pp- 54-64, LNCS, Springer Verlag.

[6] H. Edelsbrunner. Algorithms in Combinatorial Geometry. EATCS Monographs on Theoretical Computer
Science 10, 1987, Springer Verlag.

[7) L.J. Guibas and J. Stolfi. Primitives for the Manipulation of General Subdivisions and the Computation of
Voronoi Diagrams. ACM Trans. Graphics 4, 1985, pp. 74-123.

[8] R. Klein and A.'Linga.s. A linear-time randomized algorithm for the bounded Voronoi diagram of a simple
polygon. Proc. 9th ACM Symposium on Computational Geometry, San Diego, 1993.

[9] D.G. Kirkpatrick. Efficient computation of continous skeletons Proc. 20th IEEE Ann. Symp. on Foundations
of Computer Science, 1979.

[10] R. Klein. Concrete and abstract Voronoi diagrams. LNCS 400, 1989.
[11] R. Klein and A. Lingas. Hamiltonian abstract Voronoi diagrams in linear time. Manuscript, 1993.

[12] F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction. Texts and Monographs in
Theoretical Computer Science, Springer Verlag, New York, 1985.

[13] R. Rasch. Communicated by K. Mehlhorn, 1993.

[14] R. Seidel. Backwards Analysis of Randomized Geometric Algorithms. Manuscript, University of Berkeley,
1991.

[15] C. Yap and H. Alt Motion Planning in the CL-Environment.. Proc. WADS’89, Ottawa, Canada, LNCS 382,
pp- 373-380.

