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On General Properties of Strictly Convex
Smooth Distance Functions in R?
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Abstract

We investigate properties of bisectors based on strictly
convex smooth distance functions in R? and give methods
for constructing bisectors as well as their intersections. An
example is sketched to show that in 4-space the intersec-
tion of bisectors for 4 points may consist of many disjoint
curves. Using Thom’s Transversality Lemma we then de-
scribe structural properties of intersections of bisectors
that are satisfied by “most” sets of point sites; this result
provides a formal justification for arguments frequently
used in works on Voronoi diagrams, namely, arguments
based on “general position” or “non-degeneracy” assump-
tions.

1 Introduction

It is interesting to observe that in works on Voronoi
diagrams based on convex distance functions in
higher-dimensional space no reference is given for the
basic facts about geometrical structure of bisectors
and their intersections (e.g., Are they regular con-
nected surfaces? Do they have the same properties as
in the Euclidean metric? Do the bisectors for three
points cross each other properly?); of course, these
basic facts are important in computing Voronoi dia-
grams. In this paper we prove results on the geomet-
rical structure of bisectors and their intersections in
smooth strictly convex distance functions.

Further, “non-degeneracy” or “gemeral position”
assumptions for Voronoi-diagrams are often made in
the literature. But (except in the Euclidean met-
ric) the formal justification for such assumptions, to
our knowledge, are still lacking. Moreover, as far as
we know, even adequate formulation of “general po-
sition” assumptions in higher-dimensional Euclidean
space (again except in the Euclidean metric) are not
known. The reason seems to lie in the fact that as
soon as one leaves the Euclidean metric the bisectors
are no more linear spaces. In this paper we formu-
late the notion of “non-degeneracy” and give a formal
Justification for it. Our proof is based on an impor-
tant tool from the theory of singularities of mappings,
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namely, the Thom’s Transversality Lemma.

2 Basic definitions and results

Figure 1: Defining dps-distance from z to p.

Let M C RP be the boundary of a compact and
strictly convex set containing the origin O in its inte-
rior. Using M we define a mapping djs : R? x R? —
R as follows. For all pair of distinct points p and z in
R?, let M, be the image of M under the translation
with the translation vector p; that is, M, = M + p.
Let v = R[p,z) N M,, where R[p,z) denotes the ray
(halfline) from p through z (Fig. 1). We set

=]

du(z, p = [opl”

If z = p, then we set dy(z,p) = 0. The map-
ping dpr is a distance function on RP. Let p and
q be distinct points in R?. The set B(p,q) = {z €
RD | dp(z, p) = dp(z,q)} is called the bisector of
p and ¢ (with respect to dpz, or just w.r.t. M).

A supporting hyperplane of a convex set Q is a hy-
perplane L containing a point of Q and such that the
interior of Q lies entirely in one half-space bounded
by L. A convex set Q@ C RP is called smooth if its
boundary hypersurface is smooth.

Let M C RP be the boundary of a smooth and
strictly convex set Q. For each u € M let L, be the
supporting hyperplane of Q containing u. The out-
ward normal vector of M at u is the unique element
n € SP-1 (the unit sphere of R? ) such that nlL,

and n - fu > 0 for some point ¢ in the interior of Q
(Fig. 2). The normal mapping N : M — SP-1 jg
defined by u — N(u) := n; see [4], Theorem 6.2.2.
The following result relates M to the sphere SP-1.
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Figure 2: Defining the normal mapping.

Theorem 1 (Hadamard) The normal mapping of M
is a diffeomorphism.

Let L be a linear subspace of RP? whose dimension is
K < D-1. By £;(M) we denote the set of all points
u of M such that the tangent to M at u is parallel to
the linear space L; see Fig. 3.
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Figure 3: Examples for the set Xy (M).

Lemma 2 The set (M) is homeomorphic to the
sphere SP=K-1 gnd a submanifold of M.

Proof. The set £1(SP-!) is the intersection of the
linear space that is complementary and normal to
L and passes through the center of SP~!. Hence
£r(SP-1)is SP-K-1_ By Theorem 1 we have £ (M)
is the pre-image of X1 (SP~!) under the normal map-
ping N. u]
Note that SO consists of two points.

3 Bisectbrs, their tangents,
‘and their intersections

Let 6 be a vector in RP. We define the dark side of
M (in direction §), denoted by ®5(M), the set of all
points u € M satisfying 1. the line passing through
u and parallel to é intersects M in a second point

—p .
u’ # u, and 2. the vectors v'u and § have the same
direction.

Let pq denote the line connecting p and ¢. Then -

clearly the boundary of the dark side of M is the set
Zpq(M) defined above, here with L = pq.

v = R[g,z) N M,.

Lemma 3 The set of unit outer normals to the dark
side of M in direction & is the dark side of the
sphere SP~1 in that direction; that is, N(®s(M)) =
q)&(s’D—l). a

3.1 Constructing bisectors and tan-
gents to them

Figure 4: Constructing B(p, q).

The following result shows that the bisector B(p, q)
and the dark side of M in the direction pg are diffeo-
morphic. Let § = pq.

Lemma 4 For each ¢ € RP with q # p there ezists a
diffeomorphism g, (-,q) : ®5(Mp) — B(p,q)-

Proof. Let u be any point in ®5(M,). The line
through u parallel to 6 intersects ®_5(M,) in a point

‘v. Let z € RD be given by

2 = pu/(1— luol/lpal) W
We define the required mapping ¢,(-,¢q) : ®s(Mp) —
B(p, q) by setting ¢, (u, ¢) = z. First we have to prove
that z € B(p, q). From (1) we have pZ — (|uv|/|pg|) -
pZ = pu. It follows that uz = (Juv|/|pg|) - P2. So
z,v,q are collinear and v = R[q, z) N M, (recall that
R[g,z) denotes the ray from ¢ through z). From
l2pl/|up| = [zq/Ivg] follows dps(z, p) = das (=, 9).
Next we show that B(p,q) is parameterized by
¢p. For each z € B(p,q) let u = R[p,z) N M, and
Then |zp|/|up| = |zg|/|vq|, so
u € ®5(M,) and v € ®_5(M,). Hence
pE = (|pgl/|uv]) - u2; ie., P2 = (Ipgl/|uvl) - (wp— PZ).
This expression is (1). Finally we prove that ¢, is
smooth. In fact, since the scalar- and vector-valued
functions |uv| and pu in Formula (1) are smooth, the
vector-valued function pZ is also smooth. Using polar
coordinates at p, the set B(p,q) is the graph of ©,.
In other words, the map ¢, is a diffeomorphism. O

We need the following result in the plane.

Theorem 5 Let M C R? be the boundary of a strictly
convez smooth set containing the origin O in ils in-
terior. Let p,q and r be distinct points in R%. Then

1. If p,q,r are collinear then B(p,q) N B(q,r) = 0.



2. If p,q,r are not collinear then B(p,q) N B(q,r)
consists of a single point.

3. Let 01,0, denote the points of T,,(M,) and
71,72 the points of T,,(M,). Then the bisec-
tor B(p,q) is fully contained in the interior of
the strip whose boundary consists of the rays
R[p,01), R[p,02), Rlg, 1) and R[q, 12); see Fig.
4- '

- 4. Let J be a line properly crossing the line pq,
then B(p,q) is the graph of a real-valued con-
tinuous function f defined on J; i.e., B(p,q) =

{(z, f() | z€ J}. ‘

Proof. For the proof of Claim I see [3, Theorem 3]
and for Claim 2 and 3 see [3, Lemma 1]. We prove
Claim 4. Consider the projection along pq from R?
onto J; let us denote by = the restriction to B(p,q)
of this mapping. The mapping f stated in the Claim
will be defined as the “height function” on J (along
the direction pg) of the inverse of 7. To this end, we
must show that « is injective, its inverse is continuous
and has whole J as domain. ‘ .

To show that = is injective we prove that each line
parallel to pq intersects B(p,¢) in at most one point;
we omit the simple proof.

Next we show that 7! is continuous. Consider the
composite mapping T o ¢, : ®5(M,) — J. Since @,
is a homeomorphism and = is an injective and con-
tinuous mapping, the composite mapping = o Pp is
injective and continuous. Thus, by the Domain In-
variance Theorem [6, Cor. 3.22), its inverse is contin-
uous. Clearly, it follows that 7! is continuous.

From above we know more, namely, the mapping
T 0 ¢p is a homeomorphism. We conclude that the
range of 7 o ¢, is homeomorphic to ®5(M,). Thus,
the range of = is an open interval; we show that it
has no bounded ends. Let b be the projection along
pg of z € B(p,q) on J (Fig. 4). From Formula (1) it
follows that |[pz| — oo as u approaches to any point
of £,4(Mp); moreover from Claim 3 we know that the
point z must lie within a strip with bounded width.
" Therefore we have lim |Pb| = oo as u approaches o,
or 02, where P :=pgn J. (m]

Now we return to the higher-dimensional case. The
next two lemmas generalize well-known facts in the
Euclidean metric.

Lemma 6 [3] For each point z € B(p, q) the tangent
hyperplane to B(p,q) at z is the linear space spanned
by = and the intersection of the tangent hyperplanes
of My at u and M, at v, where u := R[p,z)N M, and
v:= Rlg,z) N M,. o

Let MR be the reflection of the sphere M about
its center. For each point z € B(p,q) let M’ be
the sphere homothetic to M® with center z (i.e.,
M’ = AMF + z for some ) > 0) and passes through
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p and ¢q. The existence and uniqueness of M’ follows
immediately from the definition of B(p, q).

Lemma 7 The tangent hyperplane to B(p,q) at z is
the linear space spanned by z and the intersection of
the tangent hyperplanes of M’ at p and q.

Proof. We consider in addition the sphere,Mf, the
reflection of M, about its center p; see Fig. 5. The ray
from z to p intersects M, at u and Mf at p’. We claim
that T, M, and T,M’ are parallel. In fact, we first
see that T,, M, and T,,:Mf are parallel since they are
reflections of each other about p. Next observe that
T,M’' and CZ},:Mf are parallel because the homothety
with center ¢ (Fig. 5) transforming M’ to M} sends
p to p/, and hence takes M’ to Mf. Analogously we
can also prove that T, M, and T, M’ are parallel.
Since z € B(p,q) we have |zp|/|up| = |zq|/|vq|.
Consider the homothety with center z that sends u
to p, and v to ¢. It takes T, M, to T, M’ since they
pass through u and p, respectively, and we know from
above that these hyperplanes are parallel. By analo-
gous arguments this homothety takes T, M, to T, M.
Clearly it transforms the intersection of TuM, and
T, M, to the intersection of T,M’ and T,M'. This
fact together with Lemma 6 imply the Claim. m]

Now we are ready to prove the main result of this
subsection. In the Euclidean metric the bisector is a’
hyperplane. We show that an analogy still holds for
smooth strictly convex-distance functions.

Theorem 8 Let H be a hyperplane properly crossing
the line pg. Then the bisector B(p,q) is the graph of
a smooth real-valued function defined on H.

Proof. Consider the projection along pg that maps
R? onto ; let 7 be the restriction to B(p, q) of this
mapping. We will prove that 7 is injective, its inverse
is continuous and has H as its domain.

Observe that the mapping = leaves invariant any
linear space £ that is parallel to the projection di-
rection pg. Hence, to reduce the problem to 2-
dimensional ones, we scan R? by rotating a plane
L around pq that can be taken as the linear space
spanned by a point v in £,,(M,) and the line pq. In
fact, letting v varies in X,,(M,) then the set swept
out by £ covers the whole space RP.

The restriction of = to £N B(p, q), denoted by 7*,
maps £ N B(p, q) into the line £ NH. To show that
7 is surjective, it suffices to show that 7* is bijective.
Observing that £ N B(p,q) is the bisector of p and
g with respect to the smooth strictly convex curve
LN M, —p, the bijectivity of 7* follows from Claim 4 of
Lemma 5. We conclude that the continuous mapping
w is bijective.

Now consider the mapping 7 0 ¢ : ®5(M,) — H,
which is the composition of ¢ : ®5(M,) — B(p,q)
(given in Lemma 4) and 7. We know that ¢ is a



378

homeomorphism and that, from above, 7 is continu-
ous and bijective. By the Domain Invariance Theo-
rem [6, Corollary 3.22] it follows that the inverse map-
ping of 7o ¢ is continuous. Clearly the inverse of 7 is
continuous. Hence the bisector B(p, q) is the graph of
a continuous real-valued function defined on M. Us-
ing Lemma 6 we see that at each point z € B(p, q)
the tangent to B(p,q) must cross the line pg prop-
erly. Hence at each z € B(p, ¢) the differential of = is
regular. The smoothness of 7= follows. o

Figure 5: Tangent to bisector.

3.2 Intersection of bisectors

We say that two smooth submanifolds X; and X5 of a
smooth manifold Y intersect transversely (in Y ) if at
every z € X;NX, the tangent spaces T X; and T, X,
intersect transversely in T,Y; ie., T.X; + T X, =
T.Y ; we write then X; th X,.

Theorem 9 The bisectors B(p,q) and B(p,r) for
three distinct points p,q,r intersect transversely
whenever they intersect at all.

Proof. For each z € B(p,q,r) let M’ be the sphere
homothetic to M with center z that passes through
p,q and r. Now observe that since M’ is strictly con-

vex the tangents to M’ at the distinct points p, g and
~ r do not intersect in a linear space of dimension D—2.
It follows from Lemma 7 that the tangent hyperplanes
to B(p,q) and B(p,r) must intersect properly. o

Since the transverse intersection of two manifolds is
a manifold, Theorem 9 implies that the intersection
of two bisectors for three points is a manifold. At
this point we don’t know more about the exact struc-
ture of B(p,q) N B(p,r). In the Euclidean metric
the bisectors for three non-collinear points intersect
in a linear space of dimension D — 2; the following re-
sults confirms that in smooth strictly convex distance

functions the analogy to the Euclidean metric still
holds. Before stating the result mentioned we need
some facts. Let P be a set of K points spanning a
linear space L(P) of dimension K — 1; further assume
that K < D. Other cases can be solved using this
basic case. Then by Lemma 2 the set Zr(p)(Mp) is
of dimension D — K. For simplicity we will write Zp
instead of X1 (p). For each u € Lp(M,) the segment
[p, u) lies in the interior of M,; we denote by pZp(M,)
the union of all such segments. The cone pXp(M,)
is homeomorphic to the unit ball of RP—=K+! and a
submanifold of RP.

Theorem 10 Let D > 3. The intersection B(p,q,r)
of the bisectors B(p,q) and B(q,r) is a D — 2 di-
mensional manifold that is homeomorphic to a D —2
dimensional linear space.

Proof. Let P = {p,q,r}. The manifold £p(M,)
has the dimension D — 3 (Lemma 2). Hence the cone
pXp(M,) has the dimension D — 2. Consider any
point ¢ of the cone pXp(M,); see Fig. 6. Through
t there exists exactly one plane #(t) passing through
t and parallel to the linear space L(P). Each =(t)
intersects M), in a smooth strictly convex curve Np(t).
Let z(t) be the intersection of the bisectors B(t, ¢(t))
and B(q(t), r(t)) with respect to the distance function
defined by Nj,(t) with center ¢ (Theorem 5, Claim 2),
where the points ¢(t) and 7(t) are defined analogously
as t. Determine u(t) and then z(t) as shown in Fig.
6, then z(t) € B(p,q,r). Conversely, if z € B(p,q,r)
then z can be parameterized in the way just described
by exactly one point ¢ € pXp(M,) and one point u(t).
We omit the details. a

We now sketch how to extend the approach above
to a general scheme for constructing the intersection
of bisectors. Let B(P) = B(py,p2) N B(p2,p3)N---N
B(pk-1,pk). The linear space L(P) has the dimen-
sion K — 1, hence the manifold £p(M,) has the di-
mension D — K. So the cone pXp(M,) has the di-
mension D — K + 1. There is exactly one linear space
of dimension K — 1 passing through ¢, and parallel to
L(P); it intersects M, in a K —2 dimensional smooth
manifold Np(t). Consider Z(t), the set of all z(t) de-
termined analogously as in the proof of Theorem 10.
Note that Z(t) # @ (see [5]), and in general |Z(t)| may
be > 1 (see [3]). In this way we can parameterize the
set B(P). We omit the details.

In the special case when all the slices N,(t) are
homothetic and U(t) consists of finitely many points,
then B(P) consists of |U(t)| manifolds each of which
has the same dimension as the cone pEp(M,).

Lemma 11 In 4-space there exist four points p,q,r,s
and a smooth sirictly convez distance function such
that the intersection B(p, ¢)NB(q,r)NB(r,s) consists
of three curves each of which is homeomorphic to a
line. o



PEP(MP)

Figure 6: Constructing B(ps, ..., pk)-

4 The notion of “in general po-
sition”

To avoid cumbersome notations we fix the dimension
D = 3. The results in this section hold also in the
general case. To illustrate our key idea for the proof of
the results in this section, let us consider two smooth
curves X and Y in the plane. -Even when the curves
do not intersect transversely, intuitively we feel that
by translating X an arbitrarily small amount, we can

“always” force them to do so. In fact, this intuition
is verified by first proving that the mappmg f:Xx
R? — R? defined by f(z,v) = z + v is a submersion
and then applying Thom’s Transversality Lemma to
f.

Let X and Y be smooth manifolds. Let f : X — Y
be a smooth mapping. We call f a submersion if at
each z € X the linear map (df); : T X — Ty()Y is
surjective.

Let f : X — Y be a smooth mapping. Let W be
a smooth manifold of Y. Then f is transverse to W
if for all z € X either 1. f(z) ¢ W, or 2. f(z) e W
and Tj(z)W + (df),(T X) Tf(z)Y

Theorem 12 (Thom’s Transversality Lemma [2, p.
79]) Let X,B and Y be smooth manifolds. Let
Wi,...,Wk be smooth submanifolds of Y. Let f :
X x B —Y be a smooth mapping. Assume that f
is transverse to all Wy, ..., Wk. Then for almost all
b€ B and fori=1,...,K the submanifolds f(X,d)
and W; intersect transversely, where f(X,b) is the
tmage of X under f(-,b). u]

We will also need the following result:

Lemma 13 Let f : X — Y be a submersion. Then
[ is transverse to every submanifold of Y. (]
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Our plan is now clear: We first investigate in Sub-
section 4.1 how the bisector B(p,q) changes while
keeping a point site fixed and letting the other one
varying; in fact, we will show an analogy to the case
of translating curves discussed before. Finally, us-
ing this result and Thom’s Transversality Lemma we
show in Subsection 4.2 that an analogous statement
holds for system of bisectors, when the point sites are
considered as parameters.

4.1 Bisector as function of point site

Let go be a fixed point with go # p. Let n and ng be
the intersection of S;‘,’ and the halfline from p through

¢ and qo respectively. Let o be the angle with png
as the initial side and pn as the terminal side. Let

= {no, n1}. Define the rotation axis a = png x pn,
and let R(a;a) : S2 — S2 be the rotation on the
sphere around a w1th angle a. We use the mappings
¢p and N (see Section 2 and Subsection 3.1, here we
write ¢ without subscript p) to define a mapping 7:
7(-,n) = ¢(-,n)oN~'oR(a;a)oNoy(-,go)~!. Finally
define h : B(p,q0) x (R®\ pgo) — R® by h(z,q) =
p+|pg|-((z,p+Pg/|pql) — p). We now state without
proof a key result.

Theorem 14 The mapping h : B(p,q0) X (R3\
pgo) — R3 is a submersion. Moreover, the image
of B(p,qo) under h(-,g) is ezactly B(p,q); that is,

h(B(p, g0),9) = B(p, q)- o

4.2 Configurations of point sites in
general position are dense

Let S be a set of N distinct points py,...,py € R3.
The N-tuple (p1,. .., pn) is called an N-configuration.
We say that the point sites p;,...,py are non-
degenerate or in general position if for any subsets
T of S,any g € Sbut ¢ T, and any t € T the
sets B(T) and B(t,q) intersect transversely. An N-
configuration is non-degenerate or in general position
if its components are. All N-configurations with the
same set of components are considered equivalent.

Let X and Y be submanifolds of RP. If X and
Y intersect transversely then X NY is a submanifold
whose dimension is dim X +dim Y — D, whenever XN
Y # 0. Moreover, observe that if X and Y intersect
transversely and if dimX + dimY < D then they
must have empty intersection. Using these facts we
can prove the following lemma.

Lemma 15 The distinct points py,...
degenerate if and only if

,DN are non-

1. B(p;, p;j) th B(pi, px), for all distinct i, k
2. B(p;,pj, ) h B(pi, p), for all distinct i, j, k,1
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3. B(ps, pj,pes;) h B(pi,pm), for all distinct
1,7, k,1,m.

Relation 3 can be replaced by
3’. B(pi,pj, px, ;1) N B(pi,pm) = O for all distinct

i,75,k,1l,m.
(Note that on both sides of each relation th above there
is always a point site in common.) (]

Note that Relation 3 or equivalently 3’says that no
five points lie on a sphere homothetic to M%. The
notion of “in general position” or “non-degenerate”
is justified by the following theorem.

R3

P(plv"’pN)

N(plv'“’pN)
P (RN

Figure 7: Defining the set GN*t! C (R3)N+1.

Theorem 16 The set GN¥ C (RN of non-
degenerate N-configurations is dense in (R®)N. More-
over, the complementary set of GV in (R®)N has mea-
sure zero, if it is measurable.

Proof. The proof proceeds by induction on N. For
N =3 the theorem is true by Theorem 9. Assuming
the theorem for N, we prove it for N + 1.

For each (py,...,pn) € GV C (R®)N we will con-
struct a residual set P(p,,...,pn) in R® (for the no-
tion residual see [2]) consisting of points ¢ so that
the configuration (p, . . ., PN, ¢) is non-degenerate; we
then obtain the required set GN+! as the union of
the sets P(p1, ..., pn) when the N-tuple (py,...,pN)
~ varies in GV; see Fig. 7.

Consider any (p;,...,pn) € G¥N c (RBN. We
first construct a set P(1) with the property that Re-
lations I, 2 and 3 of Lemma 15 hold under the
condition that the common point site is p;. By
the induction hypothesis, for all distinct j, k,{ < N
but # 1, the sets B(p1,p;,pr), B(p1,pj,pr,p) C
R3 are 1-, and O-manifolds. By Theorem 14 and
Lemma 13 we can apply Thom’s Transversality
Lemma (Theorem 12) with X = B(p1,q),B =
R3\ p190,Y =R3,f = h and the W;’s are the man-
ifolds B(plipj)) B(Pl,p',pk), B(Pl,Pj,Pk,PI) C R3 to
obtain a residual set ’F‘il) C R3 such that for all ¢ in
that set we have

B(p1,p;) t h(B(p1,9),9)
B(p1,pj,pe)

B(py, pj> Pes1) h

By Theorem 14 we have h(B(p1,490),9) = B(p1,9)-
Hence B(p1,p;) B(p1,9)
B(Plij,Pk) th cee
B(Plapj,Pk,Pl) th e .
‘We consider the next site p, and repeat the procedure
above for p,, but now with a smaller set of sites S\
{p1}. In this way we obtain a residual set P(?) in R®
with the property that, for all ¢ € P(?), Relations I,
2 and 3 are satisfied for p, as the common site for
both sides of each relation.

Proceeding analogously to above we reach the site
pN—2, and obtain a set P(N=2). Finally we de-
fine the set P(p1,...,pn) mentioned at the begin-
ning as P(p1,.-.,PN) = iy, n-2 P The set
P(p1,--.,pN) is residual. By construction, for all
q € P(p1,...,pN), the point sites p;, ..., py and g are
non-degenerate, since Relations 1, 2 and 3 in Lemma
15 hold for them. We then define the required set
GN+1 by taking the union of all P(py, ..., pn) while
letting (p1,...,pn) varies over GV; ie., GVt =
Ue,...omeen P(P1,- - -, Pn). Clearly the set GNt1
is dense in (R3)N+1,

Claim 2 follows from Fubini-Tonelli Theorem. 0O

5 Concluding Remarks

One may ask if the set G C RV of non-degenerate
N-configurations is open and Voronoi diagrams of N-
configurations belonging to the same connected com-
ponent of GV are combinatorially equivalent. Pos-
itive results for this question seem to be important
for ensuring the stability of future numerical compu-
tations of Voronoi diagrams based on smooth strictly
convex distance functions. Another interesting prob-
lem is to bound the number of connected components
of GN.
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