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Abstract: We consider the problem of verifying a sim-
ple polygon in the plane using “test points™. A test point
is a geometric probe that takes as input a point in Eu-
clidean space, and returns “+” if the point is inside the
object being probed or “—” if it is outside. A verifica-
tion procedure takes as input a description of a target
object, including its location and orientation, and it pro-
duces a set of test points that are used to verify whether
a test object matches the description. We give a pro-
cedure for verifying an n-sided, non-degenerate, simple
target polygon using 5n test points. This testing strat-
egy works even if the test polygon has n+1 vertices. We
also give algorithms using O(n) test points for simple
polygons that may be degenerate and for test polygons
that may have up to n + 2 vertices. All of these algo-
rithms work for polygons with holes. We also give an
_ extension of the basic testing algorithm to d dimensions.

1 Introduction

Geometric probing [CY87, Ski88, LR89, BS91, Kar91]
is the subarea of computational geometry that investi-
gates how to identify or verify an object using a mea-
suring device called a probe. In this paper we look at
the problem of verifying a simple polygon with probes.
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For verification problems we are given a description of
a target object, including its location and orientation,
and we must use probes to verify whether a given test
object correctly matches the description. We call the
procedure that produces the set of verification probes a
testing algorithm. -

One parameter that is used to specify a geometric
probing problem is the type of probe used. In this pa-
per we use point probes or test points. Point probes
measure whether a single point is inside or outside the
object being probed. That is, a point probe takes as
input a point in Euclidean space, and it returns + (pos-
itive) if the point is inside the object being probed or
— (negative) if it is outside. This type of probe was de-
veloped independently by Romanik [RS90b, Rom92] and
Mitchell [Mit90]. Here we use the model defined by Ro-
manik, which is defined formally in Section 2 below. This
model was used by Romanik and Salzberg [RS92] for ob-
taining results on verifying orthogonal shapes. Note that
in this model exact verification cannot be done since we
assume infinite precision and we assume that a point
probe does not return information about whether it is
on the boundary of an object. Therefore, a testing algo-

- rithm can only produce probes that verify an object to

within a given error bound.

In this paper we give an explicit procedure for veri-
fying a simple n-sided polygon in the plane by using at
most 5n test points, provided that the target polygon
has no three collinear vertices and the test polygon has
at most n + 1 vertices. We also give strategies using
O(n) test points for the case in which the target poly-
gon may have collinear vertices and the case in which
the test polygon has at most n + 2 vertices. If the test
polygon can have three vertices more than the target
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polygon, then verification with any finite number of test
points is impossible (see Section 4). Previous work by
Romanik [Rom92] using this model gave a testing scheme
producing 7n points for polygons with no three collinear
vertices.

Section 2 of this paper gives definitions. Section 3
gives results for simple polygons where both the tar-
get and test polygon have n vertices. First a result is
given for the case where the target polygon has no two
collinear edges, and then the result is generalized to han-
dle collinearities. Section 4 generalizes the results of Sec-
tion 3 by considering testing strategies for polygons that
may have one or two more vertices than the target poly-
gon. Section 5 extends the first result from Section 3 to
polyhedra in E¢, where no two facets are coplanar. The
full version of this paper is available [A*93].

2 Testing With Point Probes

In this section we give definitions that describe our model
for verifying or testing with point probes. The model is
general enough to be applied to any set of geometric
objects. -

An object ¢ is a measurable subset ¢ C E? of d-
dimensional Euclidean space; in particular, it is a Borel
set. An object class is a set @ of objects. Given a test
object r € @) and a target object ¢ € Q, r is consistent
with ¢ on some finite set of test points ¢ if it contains
the same subset of ¢ as g, i.e. tNr = tNq. The error
of r, with respect to g, is given by V(gAr), where V(p)
denotes the d-dimensional volume of p and gAr denotes
the symmetric difference of the sets. Let S denote the
set of all finite sets of points in E9, let I denote the open
interval of rationals (0,1).

Definition. A computable function T:Q x I — S is
a testing algorithm for Q with test set size k if there
exists a constant k dependent only on @ such that for
all € € I and for all ¢ € Q, there exists a t € S such that
T(g,e) =t and |t| < k and for all r € Q, if r is consistent
with g on t, then V(gAr) < e. T(g,¢) is called a test set
for q with respect to the class Q. For each t; € T(g,¢),
if t; € ¢ then t; is a positive test point; otherwise, ¢; is a
negative test point.

Thus given a target object ¢ € @ and error bound
¢ € I, T produces a test set for ¢ such that any test object
that is consistent with ¢ on this set has error no more
than e. If such a T and k exist, then Q is k-testable. Note
that in general a testing algorithm may produce test sets
whose sizes are functions of both € and the complexity of

- the target object, but the testing algorithms we develop
in this paper produce constant size test sets.

3 Testing n-Sided Polygons

In this section we first develop a testing algorithm for
simple polygons with test set size 6n (Theorem 1) subject
to the following two assumptions, and then improve it
to achieve size 5n (Corollary 2).

Assumption 1 The target polygon has no two collinear
edges.

Assumption 2 The target polygon and the test polygon
both have n vertices.

Theorem 1 The class of simple polygons in E? with n
vertices and no collinear edges is 6n-testable.

Proof: Our goal is to use 6 test points to verify each
edge of the target polygon. The 6 points are divided
into 3 pairs of positive/negative points, one pair near
each end of the edge, and the third pair “somewhere in
the middle of the edge” (see Figure 1). More precisely,
each pair is represented by the line segment connecting
the two points. Assume that these line segments have
some length 6;, and are placed along an edge. (The ori-
entation of the line segments with respect to the edge is
unimportant in the current case. Later, when we remove
Assumptions 1 and 2, we must choose this orientation
carefully.) One segment is placed at a distance at most
some length 82 from each of the vertices at the ends of
the edge. The third pair of points is placed between
them, at a position chosen so that we do not create any
unnecessary degeneracies. An unnecessary degeneracy is
three pairs of points on non-collinear edges that can be
split by one line. Think of each pair of test points as
being a single point on the boundary of the target poly-
gon (i.e., §; = 0). By Assumption 1, we can place these
points such that any line in the plane can stab at most
three such points, and if it does stab three, these must
be points on one of the target polygon’s edges. Now as
we increase 6; from zero, creating pairs of test points,
we can ensure, for small enough é;’s, that any line in the
plane will separate at most three test pairs, and if a line
does separate three pairs, these pairs are generated by
one edge of the target polygon.

Figure 1: Six points verify an edge of a simple polygon

We use a simple counting argument to show that the
edges of a test polygon consistent with the target poly-
gon separate the test pairs in the same circular ordering
as does the target polygon (under Assumptions 1 and 2).
Any n-sided simple polygon consistent on the test points



must separate all 3n pairs of points with its n edges. By
the placement of the test points, no edge can separate
more than two pairs of points except by separating three
pairs along an edge. Therefore, in order to separate all
3n pairs with n edges, each edge must separate three
pairs along some edge of the target polygon.

Finally, we choose parameters §; and 6, based on the
specific target polygon ¢ and a specific choice of ¢ to
guarantee that any n-sided simple polygon r whose edges
separate the 3n test pairs in the same circular ordering
as the target polygon ¢ satisfies V(gAr) < e. Clearly,
V(gAr) is a continuous function of the parameters §;,
and decreases to zero as 6; and 62 approach zero. Thus
for any choice of € > 0 one can choose §;,82 > 0 that are
small enough to achieve this error bound. O

Note that if a polygon has collinear vertices, but no
collinear edges, our testing method of Theorem 1 applies,
since we can always place the test pairs so as not to cause
any unnecessary degeneracies.

We can reduce the number of test points to 5n by
“reusing” either one positive or one negative test point at
each vertex, depending on whether the interior angle of
the polygon is convex or reflex, and making the three test
points collinear. However, to do this we must strengthen
Assumption 1 as follows:

Assumption 3 The target polygon has no three
collinear vertices.

Corollary 2 The class of simple polygons in E? with n
vertices satisfying Assumption 8 is Sn-testable.

Since the proof of Theorem 1 relies only on the general
position assumption, it also applies to simple polygons
with holes!.

Corollary 3 The class of simple polygons with holes
in E? with n vertices satisfying Assumption 8 is 5n-
testable.

This proof does not hold for polygons for which two
or more edges may be collinear, because a single edge of
the test polygon can now separate more than three pairs
of test points. As Figure 2 shows, there are polygons
that satisfy Assumption 2 but not Assumption 1, where
the edges of the test polygon separate different pairs of
points than the target. However, we note that these two
polygons are very similar by our definition, as the area of
the symmetric difference can be made arbitrarily small
by shrinking 6;. Thus, these polygons do not provide
a.counterexample to the testability of general n-sided
polygons.

If we wish to relax our requirement that vertices be
in general position, then we can replace Assumption 3

!The authors would like to thank Jit Bose for suggesting the
problem of testing simple polygons with holes.
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Figure 2: Polygons whose edges separate different pairs
of points

by the following assumption and use 6n test points in a
strategy similar to the proof of Theorem 1:

Assumption 4 There ezists a bound, § > 0, such that
for each test polygon, the minimum distance between a
vertez and an edge of which it is not an endpoint is at
least 6.

Theorem 4 The class of simple polygons in E? satisfy-
ing Assumptions 2 and 4 is 6n-testable.

Is Assumption 4 necessary? To date we have been un-
able to identify a target polygon that is not testable with
the above scheme, even if Assumption 4 is removed, but
we have no proof that-the testing scheme is guaranteed
to work! Consequently, we eliminate Assumption 4 at
the expense of adding more (but still a linear number
of) test points. No testing scheme that uses only a lin-
ear number of test points can avoid having thin strips

by which the target and test polygons may differ, as in

Figure 2; that is, no testing scheme can guarantee that
clockwise traversals of the test and target polygons sep-
arate the test pairs in the same cyclical order. However,
our next testing scheme, which builds upon the 6n-size
testing scheme of Theorems 1 and 4, does guarantee that
the two polygons have a small symmetric difference.

The revisions to the testing scheme of Theorem 1 fo-
cus on collinear edges. Let e; = (v/,v) and e; = (w,w’)
be collinear edges of the target polygon such that their
endpoints are in order v, v, w,w’ along the line contain-
ing both edges. If no other edge of the target polygon
lies along the line segment between v and w, these edges
are consecutive. If a clockwise traversal of the bound-
ary of the polygon moves from v’ to v and from w to
w', or from w’ to w and from v to v/, then these edges
are aligned. If e; and e; are consecutive and aligned,
then (v, w) will be called a phantom edge (depicted by a
dashed line in our figures).

Augment the previous testing scheme with three pairs
of test points along each such phantom edge, called phan-
tom edge test pairs or phantom pairs, placed collinear
with the test pairs defined by real edges (real pairs) and
so as to avoid any unnecessary degeneracies. Real pairs
have one point of each sign. The phantom pairs along
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one phantom edge are all of the same sign (all positive
or all negative). See Figure 3. If an edge of the test
polygon separates pairs of test points generated by two
or more collinear edges of the target polygon, then this
edge will also erroneously separate the phantom pairs,
- so in order for the test polygon to be consistent with the
target, an additional edge must separate these phantom
pairs. :

Figure 3: Testing degenerate polygons satisfying As-
sumption 2.

To formalize this argument, define the value of an edge
of the test polygon, in a clockwise traversal of the poly-
gon, as the sum of the values of the real and phantom
pairs it separates, as follows. If the directed edge sepa-
rates a real pair, with the positive test point on its right
side, the value is +1, whereas if the negative test point
is on the right, the value is -1. For a phantom pair, we
consider the positive side of the phantom edge generat-
ing the pair to be the same as the positive sides of the
real edges bounding the phantom edge. The value of a
phantom pair is -1 if the pair is separated with the pos-
itive side on the right of the separating edge, and +1 if
it is on the left. See Figure 4, where the edges of the
test polygon are denoted as arrows, and the edges of the
target polygon by solid lines.

value = +1

-+
<—‘-— value = -1

-+

+ - +
/ \ / / value = -1
+ - - +

value = +1

Figure 4: Assignment of value

Lemma 5 The value of each edge of the test polygon is
at most 3.

Proof: Assume by contradiction that there exists an
edge that has value 4 or more. A value of 4 can only

be obtained by separating real pairs along consecutive,
aligned edges or by separating phantom pairs along
aligned phantom edges. However, an edge that sepa-
rates real pairs on consecutive, aligned edges will also
separate the pairs on the phantom edge between these
edges, and these pairs will yield the opposite sign. Sim-
ilarly, an edge that separates pairs from more than one
phantom edge will separate real pairs giving the opposite
sign. O

Theorem 6 The class of simple polygons in E? with n
vertices can be tested with 6n + 61 test points, where |
is the number of phantom edges (pairs of consecutive,
aligned edges) of the target polygon.

Proof: We use the testing scheme described above. Any
test polygon that is consistent with the target polygon
on the test points must have value exactly 3n, since ev-
ery such polygon must separate phantom. pairs an equal
number of times in each direction, and real pairs exactly
once more with the positive test points on its right. The
argument is now reminiscent of that presented in Theo-
rem 1. Since each edge of the test polygon has value at
most 3 (Lemma 5), and the number of edges is n, each
edge must have value exactly 3. This implies that the
three pairs generated by a real or phantom edge of the
target polygon are separated by the same edge(s) of the
test polygon. As a result, all edges of the test polygon
are “close to” edges of the target polygon, and the only
place in which the target and test polygons can differ is
in the “strips” between the two points of a test pair, asin
the example of Figure 2. However, the area of the strips
can be made arbitrarily small by decreasing §;. Finally,
we note that [ < n, so the number of test points remains
linearinn. O

The same testing strategy can be used for simple poly-
gons with holes. The edges of a hole are traversed in
a counter-clockwise order, so two consecutive collinear
edges of the target polygon, e; = (v',v) and e; = (w, '),
where e; is an edge of a hole, are aligned if a clockwise
traversal of the boundary of the polygon moves from v’

- to v and a counter-clockwise traversal of the boundaries

of the holes moves from w to w’, or visa versa. As before,
a phantom edge occurs between every pair of consecu-
tive, aligned edges. Also, the value of an edge of the test
polygon is determined by making a clockwise traversal
of the boundary of the polygon and a counter-clockwise
traversal of the boundaries of the holes, with the value
of a pair being determined as before. By traversing the
holes in counter-clockwise order, the arguments of The-
orem 6 remain valid, and the following corollary results.

Corollary 7 The class of simple polygons with holes in
E? with n vertices can be tested with 6n + 61 test points,
where 1 is the number of phantom edges of the target

polygon.



4 Testing Simple Polygons with
More Than n Sides

In this section, we consider the question of whether an
accurate linear-size testing scheme can be devised when
Assumption 2 is relaxed and the test polygon may have
more sides than the target polygon. We will assume that
the vertices of the target polygon are in general position
(Assumption 3). Without Assumption 4, no finite-sized
testing scheme is possible.

Theorem 8 The class of simple polygons (possibly with
holes) having n or n+1 vertices, and satisfying Assump-
tions 3 and 4, can be tested with 5n (resp., 5(n+1)) test
points for a target polygon of n (resp., n + 1) sides.

Proof: We place the test points as in Corollary 2, choos-
ing 8, and 8, small enough to ensure that the distance
from a vertex to any point on either of the two test-
segments near it is less than %. The proof proceeds as in
Theorem 1: there are 3n pairs to be separated, and no
one edge of the test polygon can separate more than 3
pairs.. Each test pair must be separated by exactly one
edge, since two edges separating a pair would cause one
of the test points to be inconsistent, and three or more
edges separating a pair would cause some vertex to be
within 6 of a nonadjacent edge, violating Assumption 4.
We say that an edge of the target polygon corresponds
to an edge of the test polygon if the two edges separate
the same three pairs of test points. If the test polygon
" has n + 1 edges, then there are three cases to consider:

1. All n edges of the target polygon have corre-
sponding edges in the test polygon, and so one edge
f = (v1,v2) of the test polygon separates no pairs. Let
f connect two edges f; and f; of the test polygon. If
the corresponding edges e; and e, of the target polygon
do not share a vertex, then the two edges of the target
polygon incident on e; have corresponding test polygon
edges f3 and f4, both of which must share an endpoint
with f; by Assumption 4. But f and f; also share a
vertex, providing a contradiction. If e; and e; do share
a vertex v, then f; and f; both separate a pair of points
near the vertex v and pass at most distance -g- from ver-
tex v. Thus either v, is within distance 6 of edge f2 or
vy is within § of f;, violating Assumption 4.

2. The test polygon r has n — 1 edges that separate
3 pairs each, and hence have corresponding edges in the
target polygon ¢. Of the remaining two edges of the test
polygon, one edge f; separates 1 pair, the other f, sep-
arates 2 pairs, all of which are separated by the single
target edge e. Replace f; and f, by a single edge f sep-
arating all three pairs and adjust the adjacent edges to
form a new polygon r’. By Theorem 1 we know that
for every value of €; > 0 we can choose the parameters
61 and &, so that V(gAr’) < €. To show that for any
€2 > 0 we can choose the parameters small enough so
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that V(rAr') < ez, we observe first that as &§; is de-
creased to 0, each test pair becomes a single point on
the boundary of the polygon, and V(rAr’) = 0. As
the test points within each pair are moved continuously
apart from one another, the maximum potential differ-
ence in slope between f, and f grows continuously. The
limits on the slope of f, (determined by §;) and on the
placement of the vertex vy shared by f, and f;, (dictated
by Assumption 4) prevent f; from forming a long nee-
dle with either of its adjacent edges when 6, is increased
from zero, and so the area V(rAr’) also grows contin-

-uously. Choosing €; = €2 = €/2 and the parameters §;

accordingly, completes the argument.

3. There are n—2 edges of the test polygon that sepa-
rate 3 pairs each, and hence have corresponding edges in
the target polygon. Each of the remaining three edges of
the test polygon fy, f2, and f3; separates 2 pairs. Since
each of the edges f; separates two pairs of points, it
must be that the three edges separate six pairs that are
separated by two edges e; and e, of the target polygon
that share a vertex v. Specifically, f; (f2) separates two
pairs of test points generated by edge e; (e2) — one mid-
dle pair and one pair near the vertex other than v. f3
must separate the two test pairs near the vertex v. Any
other (non-equivalent) configuration would result in the
test polygon being non-simple, or a violation of Assump-
tion 4. However, by ourplacement of test points, no line
can separate the two pairs of test points near one vertex,
so this case is impossible. O

See [A*93] for the proof to:

Theorem 9 The class of simple polygons in E? satisfy-
ing Assumptions 1 and § with n, n+1, or n+ 2 vertices
can be tested with Tn (resp., T(n+1), 7(n+2)) test points
for a target polygon of n (resp., n+1, n+ 2) sides.

It is tempting to think that by possibly adding some
constant number of test pairs per edge we could test
polygons with n + 3 vertices. However, this is false, even
with Assumption 4. A test polygon with three more
edges than the target polygon can fool any finite-sized
testing scheme: create a test polygon by creating a long
“needle” somewhere in the middle of one of the exter-
nally visible edges of the target polygon, avoiding all test
points; this needle replaces one edge with four edges;
the area of the symmetric difference between the two
polygons can be made arbitrarily large by increasing the
length of the needle.

5 Higher Dimensions/Extensions

Consider now the problem of testing polyhedra in E9.
We can extend our two-dimensional result as follows:

Theorem 10 The class of polyhedra in E® having n
facets, no two of which are coplanar, can be tested with
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2(d + 1)n test points.

Proof: (Sketch) As in two dimensions, we use pairs of
test points that we distribute on facets of the target poly-
hedron. In each pair of test points, the separation be-
tween the points is §;, which is small. One point in each
pair is a positive point (just inside the target), and one
is a negative point (just outside the target).

We distribute d + 1 pairs on each facet of the target,
taking care to make certain that no set of d'+ 1 pairs can
be separated by a hyperplane, ezcept in the case that
the d + 1 pairs are all on a common facet. (That is, we
create no unnecessary degeneracies — in general, any d
pairs can be separated by a hyperplane, but no d + 1
pairs on different facets can be separated by a single
hyperplane.)

As in the two-dimensional case, any n-faceted test
polyhedron that is consistent with the test points must
be efficient in separating the (d + 1)n test pairs; namely,
each facet of the test polyhedron must separate (d + 1)
test pairs. This follows from the fact that each facet can
separate no more than d+ 1 pairs. But this implies that
each facet of the test polyhedron must be nearly coinci-
dent with some facet of the target polyhedron, separat-
ing exactly those test pairs that correspond to the target
facet. -

We claim that this implies that the volume of the sym-
metric difference between the test and target polyhe-
dra can be made arbitrarily small by choosing 6; suf-
ficiently small. To see this, consider a box B that is
large enough to contain the target polyhedron and all
the test points. Consider one facet, f, of the target, and
let Wy = BN Upec, b, where Cy denotes the set of all
hyperplanes that separate the (d+ 1) test pairs of f. As
6, goes to 0, the volume of Wy goes to 0; thus, we can,
for any given € > 0, pick 6; so that the volume of Wy is
less than €/n, for every facet f. But the volume of the
symmetric difference between the target and test poly-
hedra is bounded above by 3 ; vol(Wy), so we can pick
6; so that this volume is less thane. O

Remarks: (1). Note that the theorem does not assume
that the target polyhedron was simply connected — e.g.,
it may have holes.

(2). The nondegeneracy assumption in the above the-
orem can likely be removed, if we add some additional
test pairs as we did in the two-dimensional case.

Another extension of our results is to the case of
curved boundaries. If the target is assumed to have
a piecewise-algebraic boundary with constant degree k,
then the argument in the above theorem generalizes:
Place enough test pairs (d + k) in general position on
each curved facet so that the only way that a test object
can separate all pairs is for it to nearly coincide with the
target facet.
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