420

Algorithms for proximity problems on colored point sets

Thorsten Graf and Klaus Hinrichs

FB 15 - INFORMATIK, Westfilische Wilhelms-Universitit, Einsteinstr.62, D-48149 Miinster

1 Introduction

Closest pair (CP) and all nearest neighbors (ANN) are fundamental problems in computational geometry. It is well
known that these problems can be solved in time O(rnlogn) which is optimal in the algebraic decision tree model of
computation.

Consider the following modifications of the CP and the ANN problems: Let S be a set of colored points. In the CFP
(closest foreign pair) problem one has to find a closest foreign pair, i.e. a bichromatic pair of points which are closest.
In the ANFN (all nearest foreign neighbors) problem one has to find for each point in the configuration S a nearest
neighbor with different color. Since algorithms which solve the CFP or the ANFN problem also solve the CP or the
ANN problem, respectively, for configurations that do not contain two points with the same color, the problems CFP
and the ANFN are in Q(nlogn). [AERT 89] present an optimal algorithm for the ANFN problem with respect to the
L2-metric making use of several Voronoi diagrams; see also [Ya 82] and [Va 84]. The ANFN problem for a constant
number of colors and with respect to the Euclidean L?-metric is mentioned in [HNS 92).

In this paper we present plane sweep algorithms solving the CFP and ANFN problem with respect to the L®- and
the L'-metric in optimal time O(nlogn) and O(n) space.

For two points p,qg € IR® their L*®- and L!-distances are given by deo(p,q) = max{|p.z — q.z|,|p.y — q.y|} and
d1(p,q) := |p-x—q.z|+|py—q.y|. The d; and doo metrics are relevant to various applications, such as modelling of arm
movements in disc transport mechanisms [LW 80] and in integrated circuit layout. Obviously distances depend upon
the location of the coordinate axes. The L*- and L°- metrics have a useful relationship: Consider the transformation
7:(z,y) = (z+y,y —). It is easy to verify that for two points p,q € R? and the corresponding transformed points
7(p) and 7(g) we have deo(7(p),7(q)) = di(p,g). It follows that an algorithm that solves the CFP or the ANFN
problem with respect to the L*-metric can also be used to solve the same problem with respect to the L'-metric by
adding a preprocessing step in which the points are transformed by 7. Therefore we concentrate on the problems with
respect to the L°°-metric.

2 The algorithm for the CFP problem

In this section we consider the closest foreign pair problem:

Given a finite set S of points in IR?, |S| =n, S = U, S; with $;N S; = 0 for i,5 € {L,...,N}, i # j,
determine two points p € S; and g € S; (i # j) with deo(p,q) = min{d(5,q) : p € Sk,§ € Sp,k,h €
{1,...,n},k #h}.

Assign each point set S; (i € {1,...,N}) a unique color, and let ¢(p) denote the color of a point p € S. We will
consider the following reformulation of the problem: Determine a bichromatic closest pairin S.
Our algorithm ‘PSCFP’ (Plane Sweep Closest Foreign Pair) uses the well known plane-sweep principle sweeping the
plane from left to right with a vertical line (front, or cross-section), stopping at every transition point (event) of
the geometric configuration to update the cross-section, i.e. to maintain the sweep invariants which have to hold for
the points being encountered so far. All processing is done at this moving front, without any backtracking, with a
look-ahead of only one point.
The event queueis initialized with the points of the configuration S sorted increasingly with respect to the lexicographic
order

Vp#GER :p<Tq:e= (<)V ((P=2) A (P <y 0))
Throughout this paper we write p <, ¢, p<, ¢ and p =y g instead of p.z < ¢.z, p.y < q.y and p.y = ¢.y, respectively.
Denote by S, the set of points which have already been encountered, i.e. the set of points seen so far, and by Sk, its
complement in S.
In the following we distinguish between active and deactivated points in S;. When a point p is encountered by the

421

sweep line SL we wish to know whether this point forms a new closest foreign pair with one of the points in ;. We
keep a pair of closest foreign points found so far, along with their distance §. Therefore for all candidates points ¢ in
Sy which may form a new closest foreign pair with the newly encountered point p we have that g.z + § is to the right
of the sweep line. A point ¢ in Sy, is called active if ¢.z + & is to the right of SL, and if it can form a new closest
pair with a point in Sg; otherwise the point g is called deactivated. Obviously two active points cannot have the same
y-coordinate regardless of whether their colors are different or the same. Hence the active points can be stored in the
y-table with respect to <, in increasing order.

During the sweep from left to right we maintain the following sweep invariants:

1) For each point p in the y-table p.z + 6 is to the right of SL.

2) If p1,p2 are neighbors in the y-table with respect to <y and their colors are different, i.e. ¢(p1) # c(p2), then
d(p1,p2) = 6.

The first invariant is maintained by removing points p from the y-table for which p.z + § is on or to the left of the
sweep line SL. In order to maintain the second invariant we have to compute distances of points with different colors
which become neighbors with respect to <, in the y-table and update § , if necessary. We obtain such new bichromatic
neighbor pairs after inserting a new point into the y-table or after removing a point from the y-table. It seems to be
surprising that our algorithm PSCFP finds a bichromatic closest pair by just testing bichromatic pairs of points which
become neighbors in the y-table with respect to <. .

Let CFP = (p,q) be a closest foreign pair chosen in such a way that Sz does not contain another closest foreign pair
when SL encounters the larger of the points p and ¢ with respect to <*. Let &y := doo (P, q)-

K2(q) W.lo.g. we assume (p > g) A(g >y p). Since ¢(p) # c(g) no other
% \q point of S can be contained in Kg2(p) N K§(q), where K2°(r)
denotes the L>-circle with radius n and center r. If p and g become
neighbors in the y-table when SL encounters p, the second sweep
q invariant implies that a closest fo'géign pair is determined correctly
_________________ - and nothing remains to be shown. In particular this happens if -
' P =y ¢ and we therefore assume ¢ >, p in the following.
° Assume that after processing p there are active points py, ... »Pm
(m > 1) separating p and q in the g-table, i.e.

P P<yP1<y...<yPm<yq (2.1)

Since p; € Kg2(p) N Kg2(g) for all i = 1,...,m, we have p;.z <
p.x — 8. Together with (2.1) this implies that

K53 (p)

SL lpi-z —px|>|piy—pyl Vi=1,....m ‘(2.2)

If the points p and p; have different colors, i.e. ¢(p) # c(p;), their distance deo(p,p1) has been calculated and therefore
6 < doo(p,p1). Together with (2.2) this implies p;.z + § < p.z which shows that p1 must have been deactivated in
contradiction to our assumption that p, is still active. Hence we have c(p) = c(py).
Consider two points p; and pi+1 (1 < p < m — 1) with different colors, i.e. ¢(p;) # c(pi+1). Their distance has been
calculated and therefore § < doo(p;, pi+1). Note that p has the maximum z-coordinate occuring in Sy ; hence

R pez+6 < R P+ doo (i Pit1) = w30 i+ max{|pi.x — pi1.zl; pi-y — pivayl}

< max{ max py.z,

min x4+ 6} <pz
= k=i,i+1 k=i,i+1p kT + 60} <p

This implies that one of the points p; and p;;; must have been dactivated. To avoid a contradiction to our assumption
that p; and p;1, are active they must have the same color, i.e. c(p;) = c(piy1). Together with ¢(p;) = c(p) this
yields ¢(p;) = ¢(p) for all i = 1,...,m and in particular c(pm) # c(q). Hence the distance doo(Pm,q) of pr and ¢
has been calculated and therefore § < doo(Pm,). Since p,, ¢ Kg§2(q) we have doo(Pm,q) = ¢.Z — Pm.z, and hence
Pm-T + 8 < pm.T + doo(Pm,q) = g.2 < p.xz which shows that Pm must have been dactivated in contradiction to our
assumption. Hence there cannot be active points pi,. .., pm separating p and g after the point p has been processed,
i.e. p and g become neighbors in the y-table, their distance is computed and PSCFP finds a closest foreign pair correctly.

422

The initialization of the event queue, i.e. sorting the points in S with respect to <%, can be accomplished in O(n logn)
worst-case time. PSCFP computes the distances of at most 3(n—2) + 1 =3n—5 (n > 3) pairs of points implying
that the cost for all operations performed on the y-table during the sweep sums up to O(nlogn) since each point is
inserted into and deleted from the y-table exactly once. Clearly PSCFP requires O(n) storage.

3 The algorithm for the ANFN problem

In this section we consider the all nearest foreign neighbors problem:

Given a finite set S of points in the plane RZ?, |S| =n, S = UN,S; with S; N S;=0fori,je{1,...,N},
i#j. Foreachi € {1,..., N} and each p € S; determine a point ¢ € S\ S; with deo(p, q) = min{dw(p,7) :
r€S\S;}.

As in section 2 we assign each of the sets S; a unique color and reformulate the problem as follows: Determine for
each point p € S a nearest neighbor in S having a color different from c(p).

For a point p € IR? the two diagonal lines (with slopes +1) through p subdivide the plane into four quadrants. Let us
denote these quadrants as follows: QR(p) := {¢ >, p: |p.z — q.z| > |p.y — gy}, QL(p) :={g¢<zp: |pxz—qz| >
lp-y — gy} @B(p) :={g <y p: [pz—qz| < |p.y — qy|)} and QT(p) = {g >, p: |pz — ¢.7| < |py — q.y)}. For
a point p € S denote by nn(p) a nearest foreign neighbor of p found so far, and by 8(p) the distance between p and
nn(p). Furthermore let NN(p) be the set of all nearest foreign neighbors of p in S.

Our algorithm ‘PSANFN’ (Plane Sweep All Nearest Foreign Neighbors) applies the plane sweep technique described
in the previous section. PSANFN uses four sweeps: from left to right, from right to left, from top to bottom and
from bottom to top. We only describe the left-to-right sweep, the other sweeps work similarly. In the left-to-right
sweep we find a nearest foreign neighbor for all those points p € S for which there exists a nearest foreign neighbor
g € NN(p) N QR(p). In the three remaining sweeps we find a nearest foreign neighbor ¢ satisfying ¢ € QL(p),
q € QB(p) or q € QT (p) if a nearest foreign neighbor of p has not already been found before.

During the left-to-right sweep PSANFN maintains for each point p € S the smallest distance 6(p) detected so far
between p and one of the other points in Sz. The y-table stores the active points p € Sy, which still can have a nearest
foreign neighbor among the points of Sg. In particular we know that p.z + 8(p) is to the right of SL for such an active
point p. Obviously two active points with different colors cannot have the same y-coordinate.

For ease of presentation we assume that no two points with the same color have the same y-coordinate. Then the active
points can be stored in the y-table with respect to <,. Let the functions pred(r) and succ(r) return the predecessor
and successor point of r in the y-table. '

An active point p is deactivated and therefore removed from the y-table if the position of the sweep line is at or to the
right of p.z + 6(p). This may happen either if the sweep line proceeds to the right or if 6(p) becomes smaller. Since
6(p) can be different for different active points, the deactivation events cannot be processed in the order given by the
points’ z-coordinates. Hence we have to deal with a dynamic processing of deactivation events. [Sch 91] shows how
to support an efficient delete operation in a heap if the location of the the element to be deleted is known. Repeated
shrinking of §(p) for an active point p requires left shifts of its deactivation event.

It is easy to see that it is not sufficient to calculate only distances of points having different colors that become
neighbors in the y-table with respect to <,. Points with a color different from c(q) for which the computation of their
distance to g does not lead to an immediate deactivation, i.e. at g.x, cannot be contained in QL(q). Therefore in
PSANFN the y-table further supports the operations pred*(r) and succ*(r) which return for a point r its predecessor
and successor point with respect to <, in QL(r) N y-table.

During the left-to-right sweep we maintain the following sweep invariants:

1) For each point p in the y-table p.z + §(p) is to the right of SL.

2) If p1,p2 are neighbors in the y-table with respect to <y and their colors are different, i.e. ¢(p1) # c(p), then
doo(P1,P2) 2 6(p1) and doo(p1,p2) > 8(p2). '

3) For a newly encountered point p either pred*(p) = nil or c(p) = c(pred*(p)), and either succ*(p) = nil or
¢(p) = c(succ*(p)).

The first two invariants do not differ from the sweep invariants in PSCFP except for the individual d-values of the
points. The third sweep invariant is maintained similarly as the second invariant for a new point encountered by the
sweep line. If pred*(p) exists and its color is different from c(p) then 5(pred*(p)) has to be updated; then the first
invariant implies that pred*(p) has to be deactivated. This process is repeated until we find either pred*(p) = nil or

423

c(p) = c(pred*(p)). In an analog way we treat the successors succ*(p). Let p € S for which there exists a nearest
foreign neighbor ¢ € NN(p) N QR(p). We prove that after ¢ has been processed 8(p) = dwo(p,q), and therefore a
nearest foreign neighbor (not necessarily g) of p has been found. W.l.o.g. we assume q>y D

Since ¢ € NN(p) no other point r € S with ¢(r) # ¢(p) can be contained in Kgi(p,q)(p). Assume that after
processing g, i.e. maintaining the sweep invariants, §(p) > deo(p,q). Then p ¢ {pred(g),pred*(g)}. This implies
that there are points gi,...,gm € QL(g) (m > 1) among the active points lying between p and g in the y-table,
ie. p<yq1 <y ... <y @n <y g and pred*(q) = ¢,, as shown in the following figure:

N DN i S A

o N\ N .
om N D . Since gm € QL(g) and g, is still active it follows c(gm) = c(g). Let k

. JEN \ * (1 < k < m) be the unique index with ¢(g) = ¢(gm) = ... = c(gi) and
e B P v/ S c(gx-1) # c(g). If k = 1 then set gx—; := p. Now consider the point

7 g = pred(ge). Note that § # gx—1 if § & QL(q).
e SL I c(@ = c(qg) then § & K3 (5,9 (P), and therefore § € QL(g) and we get
s ’ grx—1 = ¢. This is a contradiction to our choice of k. Hence c(@) # c(q).
Ve

K 3:: (»,9) (»)

Now the second sweep invariant implies that the distance of ¢ and gx has been calculated. Hence

min{g.z + 6(9), gx-z + 6(qx)} < min{g.z, g} + doo(d, o) < min{g.z, .z} + max{|§.c — qx.zl, 4.y — gr-y|}
< max{max{§.z, gz}, min{g.z, gx.z} + doo(p, ¢)} < .z

which implies that one of the points § and g; has already been deactivated. This contradicts our assumption that all
points ¢; (¢ = 1,...,m) and § are still active. Therefore no such active points g1, ..., gn can exist, and we obtain
pred*(q) = p. This implies that our assumption §(p) > doo(P, g) Was wrong, i.e. a hearest foreign neighbor for p has
been found.)

The operations pred(p), succ(p), pred*(p) and succ*(p) can be performed in O(logn) time each (see section 4).
PSANFN computes the distance of less than 3(n — 2) + 1 + 3n pairs of points. This implies that the cost for all
operations performed on the y-table during the left-to-right sweep and hence the cost for the four sweeps sums up to
O(nlogn). Clearly PSANFN requires O(n) space (see section 4).

It remains to show how to support the y-table with the operations pred*(p) and succ*(p). In the following we restrict
ourselves to the description of succ*(p), the operation pred*(p) can be performed similarly. Let ¢ = succ*(p), then ¢
is the unique point in the y-table with (g.z + ¢.y < p.z + p-y) and (¢ >, p) for which ¢.y is minimal. We apply the
transformation 7 : (z,y) — (z +y,y) to all points contained in the y-table and store these points in a data structure
QPST (quadrant priority search tree) which supports the following three operations:

1) insert(p): Insert point p into the QPST.
2) delete(p): Delete point p from the QPST.

3) YMinInQuadrant(p): For a point p contained in the QPST find the unique (possibly non-existent) point ¢ in the
QPST with the properties (¢ <. p), ¢ >y p and minimal y-value q.y. :

The operation YMinInQuadrant(n(p)) on the transformed data is equivalent to succ*(p) on the original data. A
similar QPST is built using the transformation # : (z, y) - (y—z,y).

4 The quadrant priority search tree

The QPST is based on the priority search tree ([Mc 85], [IKO 90]). The skeleton of the QPST is a half balanced tree
([O1 82]). For each node v denote by I, the number of edges in the longest path from v to a leaf and by s, the number
of edges in such a shortest path. Half balanced trees have the balance property 1, < 2s,, for each inner node. This
balance property can be maintained after an insertion or deletion operation with at most three rotations ([0l 82]).
The QPST is a 0-2 binary tree, i.e. each inner node has exactly two sons, and a leaf search tree for the y-values,

424

i.e. for every y-value there exists one leaf in the tree. Every node contains the maximum y-value of its left subtree as
a split value and space to store a point, possibly the nil-point. The points are stored according to the following three
conditions:

1) Each point p lies on the root-to-leaf path to p.y.
2) The z-values of the points stored along an arbitrary root-to-leaf path are in increasing order.
3) If a node contains a point then its father does, too.

The y-coordinate p.y of a point p (except for the maximal one) is the split-value of the node encountered after the
first right turn on the leaf-to-root path starting at the leaf containing p.y. A point p is called proper with respect to
o if p.z < po.z and p.y > po-y. Let LST(k) denote the left subtree and RST(k) denote the right subtree of a node k.
A point p is inserted into the QPST by first inserting p.y and performing the necessary rebalancing operations, and
then sifting the point down the tree according to its weight, i.e. p.z: Compare the z-coordinates of p and the point
stored in the root node, store the one with the smaller z-coordinate and continue this operation with the other point,
exploring the root of the left or right subtree according to p.y, until an empty node is reached.

To delete a point p search for it, delete it and fill the gap by sifting successor points up the tree without changing
the tree structurally. The z-heap property is maintained by pushing up that point contained in the son nodes which
has the smaller z-coordinate. Finally delete the leaf containing p.y, update the split values and rebalance the tree if
necessary. : :

It is easy to see that each rotation may cause one sift down and one sift up operation. Since we use a half balanced
tree as a skeleton of the QPST, only constant many such operations have to be performed when rebalancing the tree.
In the following denote by r the root node of the QPST. Perform the operation YMinInQuadrant(p) as follows: By
walking down a root-to-node path K = {r = k;,...,kn, = k} search for the node & with split value p.y. During this
walk all points stored along this path are examined.

Let LT(k) be true iff k.41 is the left son of k, and RT(k) be true iff k.4, is the right son of k, for all nodes
k(v € {1,...,m —1}). For k define RT(k) to be false and LT(k) to be true. Consider a node k = k, with RT(k) or
k = k. Since we performed a binary search for p.y, the split value in node k is less. than p.y for k # k and equals
p.y if k = k. The properties of the QPST imply that the y-coordinates of all points stored in LST(k) are less than
p.y. Therefore these points need not be considered. Since these points are not of interest we only consider a skeleton
of the QPST consisting of the path K and the right subtrees of those nodes k, of K with LT(k.). A node k, in K
with RT(k) is called a dead node, and a node k, with LT(k,) is called a branch node. The following figure shows an
example with branch nodes r = k;, k = k, and dead nodes ks, k3.

Fix a branch node &, . Since the split value in k, is greater than or equal to P.y, the y-coordinates of all points stored
in RST(k,) are greater than p.y. '
Let ky, and k, be branch nodes with 4 < v, and let ¢ be a proper (not necessarily y-minimal) point, which is either
stored in a node of RST(k,) or in a node of K between k, and k,. Since K branches off to the left in ku, the proper
point ¢ is contained in LST(k,) and therefore has a y-value less than the y-values of all points stored in RST(k,).
Hence the points in RST(k,) need not be considered.
The following procedure finds the y-minimal proper point p in the subtree RST(k,) of a branch node &, or detects the
non-existence of such a point in time O(1): Start in the right son node & of k,. If the point g stored in k has an z-value
greater than p.z, the z-heap property of the QPST implies that this is also true for all other points in RST(k,). The
non-existence of a proper point in RST(k,) is detected and we continue the process as described above. If the point
g stored in node k has an z-value smaller than p.z then g is proper. We continue the process in the left son node of k
if the point it stores is proper; actually this point is better than all proper points stored in the right subtree of k. If
the point in the left son node of & is non-proper, we continue in its right son node. We stop the process if we cannot
choose a son node containing a proper point any more. 3
In the following we describe how to process the path K in reverse order: Starting in node k determine for each branch
node k, the y-minimal proper point in RST(k,). Our considerations above show that we can stop climbing the path

425

K if the search is successful. Otherwise climb up path K and continue with the predecessor branch node k, of k, if
no proper point is stored along K between k, and k,. After processing K we output the y-minimal proper point or
the nil point.

Now we show that YMinInQuadrant(p) finds the y-minimal proper point P stored in the node k. Obviously & can
not be a node in the subtree LST(k,) of a dead node k,. If & is a node on the path K, the point p is found when
constructing K, and nothing remains to be shown.

Therefore let us assume that p is stored in one of the subtrees RST(k,) of a branch node k,,. If the process terminates
before the branch node &, with & € RST(k,) is reached, a proper point would have been found in LST(k,) contradict-
ing the y-minimality of 5. All nodes on the path from the root to & store points having z-coordinates less than p.z.
While searching for the y-minimal proper point in RST(k,) we first try to walk left; we walk right if this is not
possible, i.e. the point stored in the left son node is non-proper or the nil point. Consider a node k on the path from
k, to k: If k is contained in LST(k) the left son node of k stores a proper point and we continue in LST(k). If k
is contained in RST(k) the left son node of k cannot contain a proper point since this would lead to a contradiction
to the y-minimality of the proper point 5. Therefore we continue in RST(k). Hence the node £ is examined and the
point 5 is found when processing the subtree RST(k,,). '

The height of a half balanced tree is bounded by 2log(n +2) —2 € O(logn) ([O1 82]) which implies the same bound
for the QPST. Hence sifting up and sifting down require O(log n) time each. Clearly insertions and deletions can be
performed in O(logn) time. Since the length of the path K is bounded by the height of the QPST, at most O(log n)
many nodes are considered when processing K, i.e. performing the operation YMinInQuadrant(p). Clearly a QPST
requires O(n) space if n is the number of points it stores. »

Until now we have assumed that all points have different y-coordinates. However, the QPST can be modified so it can
handle multiple points with the same y-coordinate. We first try to store a point p with p.y = yo in a node on the path
from the root to the leaf k containing yo. If this is not possible then p is stored in an overflow structure assigned to
leaf , i.e. a balanced binary tree which stores points with y-coordinate Yo according to their z-coordinate. The QPST
operations can be easily modified to deal with the overflow structures, their time cemplexities do not deteriorate.

References

[AERT 89] A.Aggarwal, H.Edelsbrunner, P.Raghavan and P.Tiwari: Optimal time bounds for some proximity prob-
lems in the plane, Information Processing Letters 42, 55-60 (1992).

[HNS 92] K.Hinrichs, J.Nievergelt, P.Schorn: An all-round sweep algorithm for 2-dimensional nearest-neighbor prob-
lems, Acta Informatica, 29(4), 383-394 (1992).

[TKO 90] Ch.Icking, R.Klein, Th.Ottmann: Priority search trees in secondary memory, in H. Géttler und H.J. Schnei-
der (eds.), Graphtheoretic Concepts in Computer Science (WG ’87), LNCS 314, 84-93, Springer-Verlag, New
York, 1987.

[LW 80] D.T. Lee and C.K. Wong: Voronoi diagrams in L; (Loo) metrics with 2-dimensional storage applications,
SIAM Journal on Computing 9(1), 200-211 (1980).

[Mc 85] E.M.McCreight: Priority search trees, SIAM Journal on Computing 14(2), 257-276 (1985).

[O1 82] H.J.Olivie: A new class of balanced search trees: Half-balanced binary search trees, R.A.LR.O. Informatique
‘Theorique 16, 51-71 (1982).

[Sch 91] P. Schorn: Robust algorithms in a program library for geometric computation, PhD Dissertation No. 9519,
ETH Ziirich, Switzerland, 1991.

[Va 84] P.M. Vaidya: A fast approximation algorithm for minimum spanning trees in k-dimensional space, Proc. 25th
Annual IEEE Symposium on Foundations of Computer Science, 403-407, (1984).

.[Ya 82] A.C. Yao: On constructing minimum spanning trees in k-dimensional space and related problems, SIAM
Journal on Computing 11(4), 721-737 (1982). :

