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Finding Maximally Consistent Sets of Halfspaces

Alon Efrat *

Abstract

Given a collection § = {hy,...h,} of n closed half-
planes in IR?, we wish to find a subset S’ C S of max-
imum size whose intersection is nonempty. We show
that solving this problem is a rather easy application
of known techniques for constructing levels in arrange-
ments of lines, and derive an O(nk log k + nvk logn)-
time algorithm for solving this problem, where k =
n—|8’|+1. A recent result of Erickson and Seidel [10]
implies that finding a maximal intersecting subcollec-
tion among a given collection of n halfplanes takes
Q(n?) time, and hence our bound is tight in the worst
case, up to a logarithmic factor. We also consider a
certain approximation to this problem, in which faster
algorithms can be developed. We also discuss possible
extensions of our method to higher dimensions and to

* other types of halfspaces, and present some applica-

tions from computer vision and pattern matching.

1 Introduction

Given a collection S = {hi,...hn} of n closed half-
planes, one wishes to solve the mazimally consistent
subset (MCS) problem with respect to S, that is, to
compute a subset of maximal size, so that all half-
planes in the subset have a point in common. Erick-
son and Seidel [10] recently showed that determining
whether there exist 3 concurrent lines in a given planar
collection of n lines requires time Q(n?) (in a some-
what restricted model of computation). By represent-
ing every line as the intersection of two infinitely close
and opposite halfplanes, we get an arrangement of 2n
halfplanes, in which there is a point contained in more
than n+3 halfplanes if and only if 3 lines in the original
arrangement intersect. Therefore, the Erickson-Seidel
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result implies that finding a point contained in a max-
imal number of halfplanes, or even finding whether
there is a point included in n 4 3 halfplanes out of 2n
given ones, requires quadratic time in the worst case
(where essentially the only operation allowed on the
given halfplanes is testing whether the point of inter-
section of the lines bounding two halfplanes lies inside
a third halfplane).

On the other hand, determining whether n half-
planes have a point in common takes O(n) time (us-
ing Megiddo’s linear programing technique [12]). This
raises the natural question of whether one can obtain
faster algorithms in cases where it is known (or as-
sumed) that most of the halfplanes do have a point in
common. We show here that this is indeed the case,
and present a simple algorithm for finding the maxi-
mally consistent subset (MCS), which is based on con-
structing the “at most k”-level in the arrangement of
the halfplane boundaries. The algorithm provides the
answer in time O(nk logk+nvk logn), where n—k+1
is the maximal number of halplanes that do have a
common point. Thus the algorithm is much faster
than quadratic when k is small. We also propose an
even simpler and faster algorithm for computing an
approximate solution to the problem, in a sense de-
fined below. We also discuss possible extensions of
our technique to higher dimensions and to other types
of halfspaces. We conclude the paper with a few ap-
plications of the algorithms to computer vision and
pattern recognition.

2 The Algorithm

Consider the arrangement A formed by the n lines
bounding the halfplanes in §. The standard level of
a point z in A is the number of lines passing below
or through z. The k-level in A is the closure of all
points at level k that lie on the edges of A, but are
not vertices (assuming general position, the vertices
of A that belong to the k-level lie either at level k or
at level k + 1). Let 8’ be a maximum-size subset of



S of halfplanes with a common point, and let £* =
|8]—|8’|]. Before we describe the algorithm, it is worth
mentioning that one always has k* < %, because one
of the points at y = 400 or at y = —oo must lie in at
least half of the given halfspaces (assuming there are
no vertical halfplanes).

Lemma 1 Partition S into the set U consisting of
all halfplanes that contain the point (0,00), and the
complementary set D = S\U. Let ny = |U| and
np = |D|. Let L¥ be the i-level of the arrangement
A(U) formed by the lines bounding the halfplanes inlU
and LP be the (np —i)-level of the arrangement A (D)
formed by the lines bounding the halfplanes in D. Then
k* > k if and only if there are k1, ko, k1 + ks = k, such
that L’,’c‘1 and LE, intersect.

Proof: If two such levels intersect at some point z,
then, by definition, z lies in k; halfplanes of & and
in k- halfplanes of D, for a total of k¥ halfplanes of S.
The converse assertion is proven in a similar manner.
m}

Guided by this lemma, we present the following
simple algorithm. It consists of three phases. In the
first phase we find a value k; that satisfies k; = 2'-! <
k* < 2¢. In the second phase we construct the “at-
most-k,” level of both arrangements A (/) and A (D).
Formally, this is the portion of the arrangement, say
A (U), consisting of all points at level at most k;; in
the second arrangement A (D) we define this region
symmetrically, to consist of all points whose level is
at least np — k;. Finally, we find in the third phase
the exact size k* of a maximally consistent subset, by
overlaying these two regions and by checking the in-
teraction between them.

2.1 First Phase: Finding %,

Finding a value for k; that satisfies the above in-
equalities is easily done by unbounded search on the
values of k = 2¢, for ¢ = 0,1,.... For each value of
k we construct the k-level of Y and the (np — k)-
level of D. If these levels do not intersect, then
Lemma 1 implies that k&; = k. Otherwise we dou-
ble k¥ and repeat this procedure. The construction
is done using the output-sensitive technique of Cole et
al. [5] (see also [8;), which computes the k-level in time
O(nlogn + blog” k), where b is the complexity of the
level, which is bounded by O(nv/k) [7] (see also [16] for
a slight improvement). Since a level is an z-monotone
polygonal path, checking for intersection between two
levels can be trivially done in time proportional to the
combined complexity of both levels. The total cost of
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this phase is thus easily seen to be
O(nlognlogk* + nvk*log? k*) .

2.2 Second Phase: Constructing the “at-
most-k,” Levels

The procedure used above for computing, say the
ki-level in the arrangement A (/) yields the intersec-
tion points of all the lines bounding halfplanes in Y
with that level. Since the complexity of the k-level
is at most O(nv/k) [7], these intersection points parti-
tion the lines of U into O(nv/k1) = O(nVk*) segments,
rays and full lines, and each of these pieces either lies
fully below the k;-level or fully above it. We take
all these segments, rays, and lines that lie fully be-
low the kj-level and compute all their ¢ intersection
points, using the optimal algorithm of Chazelle and
Edelsbrunner [3], or the randomized algorithm of Mul-
muley [13]. Both algorithms provide the intersection
points in the order in which they appear along each of
the segments, making it straightforward to compute
the level of each edge in the resulting arrangement.
The time required by either algorithm (expected time
for Mulmuley’s algorithm) is O(nv/k* logn +t). How-
ever, as is well known, t = O(nk;) = O(nk*) [7], so
the running time of this phase is O(nvk* log n+nk*).
Applying a symmetric procedure (replacing “below”
by “above”), we also compute the “at-most-k;” level
in the arrangement A (D). Let us denote the two re-
sulting subarrangements by A <, (/) and A <, (D),
respectively.

2.3 Third Phase: Finding k*

To find k*, we have to overlap the two subarrange-
ments A <x,(U) and A<, (D), computed in the pre-
vious phase, to find a point whose sum of levels is
as small as possible. Lemma 1 and the choice of k;
guarantee that such a point does indeed lie in both
these subarrangements. Moreover, we claim that it
suffices to search for such a point only among the ver-
tices of the two subarrangements (including also vir-
tual points at infinity on the rays and full lines par-
ticipating in these subarrangements). Indeed, if z is
such a point, then (assuming general position) there
is an entire face f in the superposition of these subar-
rangements, whose closure contains z and all of whose
points lie in the same maximum number of halfspaces.
But, as is easily verified, one of the vertices of f must
be a vertex of one of the two subarrangements, thus
establishing the claim.
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We now merge the vertices of A<, (U) and
A<k, (D) into a single list @ sorted by z-coordinate.
Since the vertices of each of these subarrangements
can be represented as the union of at most £* sorted
lists (along each level separately), we can perform the
merge in time O(nk*logk*). We next overlay these
subarrangements by performing a standard line sweep-
ing procedure over each subarrangement separately,
using @ as the events queue of the sweep. This allows
us to locate each vertex of one subarrangement in the
other subarrangement. Moreover, since the size of the
y-structure of the sweeps is always O(k*), the sweeps
take a total of O(nk* logk™) time.

Summing up the bounds on the running time of the
three phases of the algorithm, we see that the dom-
inant terms are O(nk*logk* + nVk* logn), thus im-
plying the main result of the paper:

Theorem 2 The mazimally consistent subset of n
given halfplanes can be computed in time O(n(k +
1)log(k + 1) + nvk + llogn), where k is the mini-
mum number of halfplanes whose removal makes the
remaining set consistent.

Remark: We can speed up the algorithm if we
only want an approximate value of k*. That is, we
only run the first phase of the algorithm, and get a
value k; which approximates k* to within a factor of
2. The running time is now only O(nlognlogk™ +
nvVk*log?® k*). Moreover, we can replace the factor 2
by any factor of the form 1 + ¢, for any € > 0, by
performing the same unbounded search as in Phase 1,
over values of k of the form (1 + ¢)¢, for i = 0,1,....
The running time becomes

O(-i-nlognlog k* + —\—}_Em/ls:_”‘log2 k"),

where we also use the result of Welzl [19] concerning
the overall complexity of several levels in an arrange-
ment of lines.

3 Extensions
3.1 Generalization to higher dimensions

The maximally consistent subset problem can be
extended naturally to d > 3 dimensions, where we
have a collection S of n halfspaces, each bounded by
a hyperplane, and we wish to find the subset of maxi-
mum size whose intersection is nonempty. The general
outline of our algorithm can be extended in a straight-
forward manner, including an appropriate extension of

Lemma 1. Unfortunately, efficient implementation of
some of the steps of the algorithm is not available in
higher dimensions.

In the first phase, instead of computing only a sin-
gle level at a time, we compute the entire subarrange-
ments A <x(U), A <x(D), and then test whether their
boundaries (which are the desired k-levels) intersect.
A recent randomized algorithm by Mulmuley [14] com-
putes these subarrangements, and its expected time is
O(nl4/21k14/21) for d > 4 (which is worst-case opti-
mal), and O(nk?log® %) for d = 3 (which is almost
worst-case optimal, up to a polylogarithmic factor).
The main technical obstacle is in computing efficiently
the superposition of these two subarrangements, which
is required in the third phase of the algorithm.

In d = 3 dimensions, this can be done efficiently
as follows. Each of these subarrangements consists
of a collection of convex polytopes with pairwise dis-
joint interiors, whose overall combinatorial complexity
is O(nk?) [4]. We preprocess each polytope for efficient
ray shooting, using the technique of [6]. Then we start
tracing the edges of, say A <i (i), through the cells of
the other subarrangement A <x(D), and vice versa.
Once we know the cell of A <x(D) containing one end-
point of an edge e of A <i(U), we start performing ray
shooting along e, thereby finding all intersections of e
with the faces of A <x(D), in logarithmic time per in-
tersection. The total number of intersections between
edges of one subarrangement and faces of the other
is also O(nk?), as follows easily from the results of
[4, 17], so the total cost of the third phase of the algo-
rithm is O(nk?logn). Filling in the missing details of
the other phases of the algorithm, which we leave to
the reader, one obtains:

Theorem 1 The mazimally consistent subset of n
given halfspaces in 3-space can be computed in time
O(n(k +1)2(log n +log® )), where k is the minimum
number of halfspaces whose removal makes the remain-
ing set consistent.

3.2 Other Types of Halfspaces

Going back to d = 2 dimensions, we can generalize
the MCS problem to cases where S is a given set of n
halfplanes that are bounded by other types of closed or
unbounded Jordan curves. This setup has been stud-
ied by Sharir [17], following the technique of [4], who
gave sharp combinatorial bounds on the complexity of
the “at-most-k” level in the arrangement of S, namely
the region consisting of all points that lie in at most k
of the given halfplanes, or, symmetrically, in at least



n — k of these halfplanes. It follows from the results
of [17] that

(1) If each pair of the curves bounding the given half-
planes intersect at most twice (the case of pseudo-
discs) then the complexity of the “at-most-k”
level is O(kn).

(ii) If the curves bounding the given halfplanes are
all z-monotone and each pair of them intersect in
at most s points (each halfplane lies either below
or above such a curve), then the complexity of
the “at-most-k” level is O(k?A;(n/k)).

(111) Using a simple divide-and-conquer algorithm,
whose merge step consists of a standard line-
sweeping procedure, the “at-most-k” level of the

given arrangement can be computed in time

O(nklog®n) in the case of pseudo-discs, and
in time O(k®)\,(n/k)log’n).in the case of z-
monotone curves.

These results suggest an algorithm similar to the one
presented above. Its first phase also performs an un-
bounded search on k = 2¢, for i = 0,1,..., and tests
for each such k£ whether the “at-most-k” level of the
arrangement is empty or not, and then the second
and third phases can be combined to a single phase
that examines each vertex in the resulting subarrange-
ment to find the one that lies in the maximum num-
ber of halfplanes. The total runnmg time of the algo-
rithm is easily seen to be O(nk log n) in the case of
pseudo-discs, and O(k2)s(n/k)log? n) in the case of
z-monotone curves.

4 Applications

Our problem can be formulated in the context of
computer vision as a generalization of the digital line
problem. There, one gets a set of n points on the grid
(pixels), some of them black and some white, and has
to decide whether this assignment pattern could follow
from digitizing some straight edge (halfplane), that is,
whether the two subsets are linearly separable. If this
is the case, then the location of the straight edge can
usually be found within subpixel accuracy, which is
useful [2]. One way to solve this problem is to look
at the dual problem, where every colored grid point is
transformed to a halfplane in the plane of straight line
parameters, and to ask whether all the halfplanes in-
tersect, a question that can be answered in O(n) time
(see, for example, three on-line algorithms [15, 11, 18],
of which the last two use the special properties of the
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grid). It turns out, however, that this approach is not
useful for real images, where errors in the pixel color
assignment may occur, and that methods which toler-
ate some errors are needed. The question of whether
a set of pixels is consistent with some digitization pat-
tern of a straxght edge, excluding a finite number k of
exceptions, is equivalent to asking whether n — k of
the dual halfplanes, in the plane of line parameters,
intersect.

Another application is to detect and locate 2-

‘dimensional elliptic point clusters in pattern recogni-

tion tasks. In a typical clustering task, one is given
a mixed set of points on the plane, known to come
from two different classes: one class (white points)
that is believed to be scattered inside an elliptic re-
gion, except for a relatively small number of outliers,
and another class (black points) that is just uniformly
scattered. Due to the presence of outliers and the ab-
sence of an exact probabilistic model, it is difficult to
find the ellipse using the traditional least squares min-
imization, and one just tries to find an elliptic plane
region that will include as many of the white points
as possible. This task can be solved by observing that
if the ellipse contains a certain point, the coefficients
(A,B,C,D,E, F) of its associated 2nd degree poly-
nomial Az? + Bzy + Cy?> + Dz + Ey + F = 0 obey
a certain linear inequality and must therefore lie in a
certain halfspace of the 5-dimensional (projective) pa-
rameter space. Formally,let {(z;,y:), i€ZUJ} bea
set of points, where {(z;,y;), ¢ € Z} is the white set,
and {(z;, %), i € J} is the black set. Map every point
(zi, ¥:) to the vector

v = (17 Zi, Yi, z?) yi27 ziyi) .

We seek a six-dimensional parameter vector ¢, whose
first component is 1, such that the inequalities

v;-c<0 i€Z and v;-c>0 i€ J

are satisfied for the maximal number of points. Ge-
ometrically, the inclusion of a certain white point in
the ellipse corresponds to the parameters being in a
parameter halfspace, and the absence of a black point
corresponds to the parameters being in the opposite
halfspace. By looking for the maximal intersection
of halfspaces in the parameter space, we can find the
parameters of the ellipse that includes the maximal
number of white points and the minimal number of
black points. To ensure that the parametrized second
degree region is indeed an ellipse, we also need to en-
sure that the discriminant B2 —4AC is negative. Thus
the problem reduces to the maximally consistent sub-
set problem in 5-space, with the additional twist that
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the intersection of the halfspaces in a consistent sub-
set is also required to meet a certain region bounded
by the above quadric. Thus a full efficient solution to
this problem still appears to be an open problem.

Another application is concerned with the exact
positioning of objects with the aid of special figures
painted on them. Such figures, called fiducials, are de-
signed so that digitization of them will constrain their
position with high precision. Although such fiducials
are usually analyzed assuming an ideal noise-free con-
text, we may use our approach to locate them even
when errors are present. It was found that circles
(and circular rings) perform very well as fiducials [1, 9].
Finding the parameters of such circles that are most
consistent with the digitization pattern available, is
just a special case of the problem of fitting the best
ellipse, as described above, where now we want to fit
the best circle. Here there are only three parameters
that we have to determine (the general equation of a
circle is z2 + y? + Az + By + C = 0), and there is no
extra quadratic constraint on the parameters. Hence
we can apply the 3-dimensional extension of our al-
gorithm, and thus find the circle fitting most of the
constraints in time O(n(k+1)?(log n+log? %)), where
k is the minimum number of outliers.
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