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Abstract

Let P; be a subpolygon of a simple polygon P.
A vertex of P; is called critical if it is an end-
point of a connected component of P;Nbd(P) that
has non-zero length. Let X be any subset of m
points of the boundary of P containing all reflex
vertices of P. We give an O(k*m3*=3) time algo-
rithm that determines whether the boundary of
P can be covered by k or fewer convex subpoly-
gons of P whose critical vertices belong to X.
We then present a characterization of polygons
whose boundary admits a convex cover of car-
dinality three, and conditions under which this
cover of the boundary can be extended to a cover
of the interior of the polygon. These results to-
gether imply the existence of an O(n®) time al-
gorithm to determine whether a simple polygon
admits a convex cover of cardinality three. We
then show how to exploit additional properties
of polygons that admit such covers to reduce the
running time of the algorithm to O(nlogn).

1 Introduction

A simple polygon P is said to be convez if, for
each pair of points z, y of P, the line segment
[z y] is contained in P. A polygonal chain C;
contained in a simple polygon P will be called
convez if there exists a convex subpolygon of P
of whose boundary it is a subset. The subset of
bd(P) that joins a point p of bd(P) to a point g of
bd(P) counterclockwise will be written as P,_,.

A point p of a simple polygon P is said to be
visible from a point p' of P if the line segment
[p »'] does not intersect the exterior of P. We
say that a subset Q of P is completely visible
from another subset Q' of P if every point of

1Supported by the Natural Sciences and Engineer-
ing Research Council of Canada under a Post-Graduate
scholarship.

Q is visible from every point of Q’, and denote
by V(P,Q) the set of points of P from which
Q is completely visible. A polygon P is called
star-shaped if there exists a point z of P such
that P = V(P,{z}). The kernel of a star-shaped
polygon P, denoted by Kr(P), is the set of all
points z of P for which P = V(P,{z}). '

Two points p, p’ of a simple polygon P are
link-k visible if there exist points p = py, py, ...,
Pk-1, pk = p' such that p; is visible from p;_,
for ¢ = 1 to k. Such a path is said to have
link-length k. The link-distance between p and
P’ is the minimum link-length of a path between
pand p'. The link-diameter of P is the maximum
link-distance between any pair of points of P.

AsetC={Cy,..., Ci} is said to be a k-cover
of a simple polygon P if P = U%_,C;. It is called
a conver k-cover of P if each C; is convex. A
convez cover of a subchain Py 4 of bd(P) is a set
of convex polygonal chains whose union contains
Pp..q-

Let P, 4 be a subchain of the boundary of P,
C={C, ..., Ci} be a convex k-cover of Pp._,,
and w be a point of P, ,. Given ¢ > 0, we shall
denote the subset of C; whose distance to w is
less than € by N,(C;,w). Suppose that w is also
a vertex of C;. The vertex w will be called critical
if for each € > 0, N.(C;,w) \ {w} contains both
points of bd(P) and points of int(P); w will be
called internal if there exists ¢ > 0 such that
N.(Ci,w) C bd(P).

Computing minimum covers by convex poly-
gons has been proved NP-hard by Culberson and
Reckhow [CR88], even when only the bound-
ary of the polygon needs to be covered. Sher-
mer [She93] gave an optimal linear time algo-
rithm that solves the convex 2-cover problem. In
this paper, we present an O(nlogn) algorithm to
solve the convex 3-cover problem. The basic ideas
for our algorithm will come from an algorithm

~ that solves the convex k-cover problem for the
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boundary of a simple polygon P in O(k*m3%~3)

time, provided that the critical vertices of the
covering subpolygons are restricted to belong to
a given subset of bd(P) of size m.

We develop this more general algorithm in Sec-
tion 2. In Section 3, we present a characterization
of convex 3-covers that shows that, if the bound-
ary of a simple polygon admits a convex 3-cover,
then it admits one in which all critical vertices
belong to a subset of bd(P) whose size is linear
in the number of vertices of P. We then apply the
result of the preceding section to obtain a poly-
nomial time (but very inefficient) algorithm that
solves the convex 3-cover problem. In Section 4,
we show how to exploit the specific nature of this
particular problem to reduce the running time of
the algorithm to O(nlogn). Finally, Section 5
presents the conclusion and some open problems.

2 Covering the boundary of
simple polygons

Let P be a simple polygon, k be a positive inte-
ger, and X = {z), ... , Zm} be a set of points
of bd(P) that contains all reflex vertices of P. In
this section, we present an algorithm to deter-
mine whether there exists a convex k-cover {C},
... y Cik} of bd(P), such that for i = 1 to k,
each critical vertex of C; belongs to X. This al-
gorithm runs in time polynomial in m for each
fixed k. We shall assume a real RAM model in
which elementary arithmetic operations can be
performed in constant time.

A standard convex chain is one all of whose
vertices are either critical or internal. Let C =
{C1, ..., Ci} be a convex k-cover of a subchain
P, 4 of the boundary of a simple polygon P. The
cover C of P, 4 will be called standard if every
chain of C is standard. Since a subchain P,_,
of P has a convex k-cover if and only if it has
a standard convex k-cover, we can restrict our
attention to standard k-covers.

We shall say that a chain C} is the restriction
of a chain C; to a subset P, , of the bound-
ary of P if C} is a connected subset of C; whose
endpoints belong to P, 4, and that contains all
open intervals of bd(P) that C; contains. The

composition of two chains C} = {v!, ...
and CT = {v], ..., v}.}, denoted by C} o CT, is
the chain {v}, ..., v}, o, ..., v5. }if v;, # o,
and the chain {vf, ..., v}, v5, ..., v5.} oth-
erwise. An empty chain shall be denoted by the
value nil.

Let e;, ej be edges of P, and z, y be points such
that z € e;\{v;} and y € e;\{vj41}. If there exist
points z’, y’ that lie clockwise from z on e; and
counterclockwise from y on e; respectively, such
that the chain 2'zyy’ is convex (and thus con-
tained in P), then we shall say that z sees y con-
vexly, and denote it by z ~ y. Suppose that chain
C! = {v, ..., v} is the restriction of a stan-
dard convex chain to P, and that CT = {v],
..., Uh.} is the restriction of a standard convex
chain to Py, 4. To determine whether there ex-
ists a standard convex chain whose restriction to
P, 4 is C!oCT, it suffices to verify that either
C{ or CT is nil, or that (a) v}, ~ o], and (b)
vh, ~ ol

Conditions (a) and (b) can be checked in con-
stant time given C! and CT, provided that the
vertices of C! and C! belong to a known sub-
set of bd(P), whose visibility graph can be pre-
computed in time proportional to its size [Her87].
We will say that C! and CT are compatible, de-
noted C} ¢ CT, if conditions (a) and (b) hold.
We will call two covers C! and C™ compatible,
denoted C' O C™,if C! OCr fori=1to k.

Consider the subchain P, 4 of bd(P). We will
represent a standard convex k-cover C = {C),
«ee s Ci} of Py 4 by a 2k-tuple t = (Iy, ... , I,
1, ... , Tk), Where l; (r;) is the clockwisemost
(counterclockwisemost) point of C; on P, 4. We
will call a 2k-tuple to which corresponds at least
one standard convex k-cover of P, , admissible
for Py 4.

We observe that we can determine whether
C! © CT from the tuples representing C* and C".
Thus admissible tuples and standard convex cov-
ers are equivalent in this sense, even though one
admissible tuple may correspond to an exponen-
tial number of different covers. For this reason,
we shall apply the notation and terminology de-
veloped since the beginning of this section to ad-
missible tuples as well as to covers.

This suggests a divide and conquer approach to
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the problem of determining the set T(p, q) of all
tuples admissible for P, 4, whose use we justify
by the following lemma.

Lemma 2.1 An admissible tuple ezists for a
chain Py, if and only if, for each point w of
X NPy, 4, there are admissible tuples t' of By v,
and t” of P, 4 such that t' O t".

We now describe the way in which the two sets
T(p, w) and T(w, g) are combined to obtain T{(p,
q). Let us assume for the purpose of this discus-
sion that both P, _,, and P, .4 contain z points
of X. One could combine these sets by examin-
ing every pair of tuples t! € T(p, w), t" € T(w,
q), and adding ¢ 0 ¢" to the output if t! O ¢t". This
procedureis clearly correct, by Lemma 2.1, but is
not very efficient, as it requires O(k3z4*~4) time.
The merging operation can in fact be performed
in O(k*z3*~3) time using a more complicated al-
gorithm, but the details will be omitted here due
to lack of space. ‘

Since admissible tuples in T(p, p) correspond
to valid convex covers of bd(P), a polygon has a
convex k-cover all of whose critical vertices be-
long to X if and only if the set returned by the
algorithm is non-empty. However, one cannot ef-
fectively recover a convex k-cover of P from the
admissible tuple corresponding to it. To be able
to obtain a convex k-cover of P from the corre-
sponding admissible tuple, we need to store, for
each tuple ¢ = ¢! 0 ¢" generated by our algorithm,
pointers to the tuples ¢/ and ¢ from which it was
obtained.

Thus, each admissible tuple returned by our
algorithm becomes the root of a binary tree con-
taining the tuples from which it was obtained. A
convex k-cover of P can be retrieved by visiting
the leaves of this tree using a preorder traver-
sal. We shall refer to this algorithm as algorithm
Boundary-Cover; this section is summarized in
the following theorem.

Theorem 2.1 Let P be a simple polygon, X be
a subset of bd(P) containing all reflez vertices of
P and k be a fized integer. There is an algorithm
that determines whether bd(P) admits a convex
k-cover all of whose critical vertices belong to X
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in O(k*m3*=3) time and O(k®m?*~2) space, and
returns such a cover if one exists.

3 Simple Unions of Three
Convex Polygons

In this section, we apply algorithm Boundary-
Cover to recognize simple polygons that admit
a convex cover of cardinality three.  We first
need to show how to reduce each instance of the
convex 3-cover problem for a simple polygon to
an instance of the convex 3-cover problem for the
boundary of this same polygon. This is accom-
plished using the next two lemmas.

Lemma 3.1 Let P be a simple polygon that ad-
mits a convez 3-cover. If P is not star-shaped,
then it has link-diameter three.

Lemma 3.2 A simple polygon that is star-sha-
ped or has link-diamet'qr three admits a convex
3-cover if and only if its boundary admits one.

The proof of Lemma 3.2 in fact gives a lin-
ear time algorithm to convert a convex 3-cover of
bd(P) into a convex 3-cover of P.

3.1 Restricting the set of potential
vertices '

We now proceed to exhibit a set X of points of
bd(P) that satisfies the property that, if bd (P)
admits a convex 3-cover, then it admits one in
which all critical vertices of the covering subpoly-
gons belong to X.

A point p of bd(P) will be called primary if
it is an endpoint of an extension of an edge e of
P that is not a vertex incident to that edge; we
shall then say that e generates p.

A tip of a simple polygon P is a maximal con-
vex subchain of bd(P). A point p that belongs
to a tip T, of P will be called secondary if there
exists a primary point ¢ that belongs to a tip T,
of P adjacent to T}, and if a common endpoint
of T, and T, is collinear with p and g, and be-
longs to Kr(P). Primary and secondary points
of bd(P) will be referred to as potential points.
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We will call the leftmost and rightmost tips of
a subchain P,_ 4 of bd(P) extreme. We will say
that a tip T is wedged with respect to a cover C
if T contains a vertex of C that is not primary.

We shall say that a chord c of P is mazimal if
bd(P) N int(c) is a reflex vertex of P. An edge e
of a covering polygon C; that is chord of P will
be called quasi-mazimal if it is maximal, or if

1. e determines exactly two subpolygons of P,
2. the subpolygon that does not contain C;

has a single reflex vertex v that belongs to
Kr(P), and

3. e intersects both extensions of the edges of
P adjacent to v.

We will say that the reflex vertex of P that lies
in int(e) or belongs to the subpolygon of P that
does not contain C; supports e. An edge e will
be called out of place if

1. it is not quasi-maximal,’

2. one of its endpoints is not a reflex vertex of

P, and

3. it does not join a primary point p of P to an
endpoint of an edge that generates p.

Lemma 3.3 If the boundary of a simple polygon
P admits a standard conver k-cover C, then it
admits a standard convez k-cover with no more
critical vertices than C and no out of place edges.

We will say that a standard convex k-cover C
of bd(P) is suitable if it minimizes the following
two parameters among all covers with no out of
place edges, in this order :

1. The number of critical vertices of C;

2. The number of distinct vertices of polygons
of C that are not primary.

Lemma 3.3 ensures the existence of at least one
suitable cover of bd(P). The next lemma de-
scribes a very important property of suitable cov-
ers.

Lemma 3.4 A suitable 3-cover C = {C;, Cy,
Cs} of the boundary of a simple polygon P does
not contain more than two adjacent wedged tips.

The idea behind the proof of Lemma 3.4 is to
first characterize precisely the conditions under
which vertices of a suitable cover may fail to be
primary, and then to show by contradiction that,
if v is a vertex of a subpolygon C; in a suitable
cover, and if v is not primary, then one of the
vertices of C; adjacent to v must be. By apply-
ing local modifications based on Lemma 3.4 to a
suitable cover of bd(P), we obtain the following
theorem.

Theorem 3.1 If the boundary of a simple poly-
gon P admits a convex 3-cover, then it admits
a standard convez 3-cover in which every critical
vertez is a potential point of bd(P).

3.2 Algorithm and running time
analysis

We are now ready to describe the algorithm
that recognizes polygons admitting a convex 3-
cover. It first verifies whether P is star-shaped,
or has link-diameter 3. If so, it uses algorithm
Boundary-Cover to obtain a list of convex 3-
covers of bd(P), and returns one after transform-
ing it into a cover of P (provided at least one con-
vex 3-cover of bd(P) exists). Otherwise it returns
the empty set. The correctness of the algorithm
follows directly from theorems 2.1 and 3.1.

To obtain a bound on the running time of the
algorithm, we only need to bound the number of
potential points of dd(P). This is done in the
next lemma.

Lemma 3.5 A simple polygon P with n vertices
contains at most 9n — 27 potential points on its
boundary.

Since each primary point can be obtained from
the list of vertices of P using a single ray-shooting
query, and since each secondary point can be ob-
tained from the list of primary points of P in the
same manner, it follows from a result of Guibas
et al. [GHL*87] that all potential points of bd(P)
can be generated in O(nlogn) time using O(n)
space. Combining this with Theorem 2.1, we con-
clude that this algorithm runs in O(n®) time us-
ing O(n*) space.



4 Computing Convex 3-Co-
vers Faster

In this section, we improve the running time of
the algorithm described in the previous section to
O(nlogn), and its space requirements to O(n).
This is done by reducing the number of tuples
that need to be considered. Conceptually, the
reduction is performed in two steps :

e Show that only a constant number of points
of P, 4 are of interest apart from reflex ver-
tices of P;

o Show that the reflex vertices of P, 4 can be
divided into a constant number of equiva-
lence classes whose elements are interchange-
able with respect to compatibility.

Combining these two results then yields the im-
proved algorithm.

Let p, ¢ be two points of bd(P), and let e be
an edge of P that does not belong to P, 4, and
whose extension ¢ has an endpoint w in the inte-
rior of P, 4. We shall say that e is oriented clock-
wise (counterclockwise) with respect to Pp._ 4 if
there exists ¢ > 0 such that all points of N, (P, w)
that lie clockwise (counterclockwise) from w on
P, ..q belong to the interior halfplane determined
by c. We start by considering visibility among
those edges. '

Lemma 4.1 Let p, q be two points of bd(P), and
let e;, e; be two edges of P that do not belong to
P, ., and whose extensions have endpoints w;,
wj on P, 4. If e; and e; have the same orienta-
tion, then no interior point of e; sees any interior
point of e;.

We can use the previous lemma to obtain a
bound on the number of primary points of a chain
P, .4 that may be generated by edges of P not
belonging to P,.,. This bound is stated in the
following lemma.

Lemma 4.2 Let P be a simple polygon, and D,
q be two points of bd(P). If the boundary of P
admits a convez k-cover, then at most 2k — 2 pri-
mary points of P, , distinct from p and q can
be generated by edges of P that do not belong to
P p...q°
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The chain P, _, will be called k-primal if it
contains at most k primary points generated by
edges of P, p, and if P, , contains at most k
primary points generated by edges of Py, .

We can define a labeling function f on the re-
flex vertices of P,..., whose value depends in part
on its position relative to the points mentioned
in Lemma 4.2. This labeling defines an equiva-
lence relation on the set of tuples, and has the
following important property.

Lemma 4.3 Let P, 4 and Py o be two sub-
chains of bd(P) whose interiors are disjoint, let
z be a reflex vertez of Py, 4, and let y, z be reflex
vertices of Py o. If f(y) = f(2), then z ~ y if
and only if z ~ z.

Under the same conditions, it is also the case
that y ~ z if and only if z ~ z. Let f(¢) denote
the tuple obtained from a tuple ¢ by replacing
each element z of t by f(z), and let RT(p, q)
be the set obtained from T(p, g) by replacing
each tuple ¢ of T(p, q) by f(t). We will call such
f(t) a restricted admissible tuple. We associate
with each distinct value z in the range of f an
arbitrary reflex vertex v of P, 4 for which f(v) =
z. It follows from the definition of f that the size
of RT(p, q) is bounded above by a constant.

We are now ready to describe the manner in
which our improved algorithm works. The base
case remains the same as that described in Sec-
tion 2. The merge step however becomes much
simpler, since we are only dealing with a constant
number of tuples. First we determine whether
Pp..w and P, 4 are 4-primal. It follows from
Lemma 4.2 that we can abort immediately if this
is not the case. Otherwise we are provided with
a constant upper bound on the size of the set of
tuples that can be obtained by merging RT(p, w)
and RT(w, q). We then label each potential point
zof Py 4 and Py 4 by f(z), compute all admis-
sible tuples that can be obtained by combining a
tuple of RT(p, w) with a tuple of RT(w, q), and
finally remove duplicates.

We can thus apply the same divide and con-
quer technique as in Section 2 to compute the
set of restricted tuples corresponding to admis-
sible tuples of a subchain P, 4 of bd(P). The
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correctness of this algorithm can be proved by
induction.

One can retrieve a cover corresponding to a
given restricted admissible tuple ¢ in the same
manner as in the case of the algorithm presented
in Section 3.2. Since merging two sets of re-
stricted tuples can be done in O(n) time, we get:

Theorem 4.1 Given a simple polygon P, it is
possible to determine whether it admits a convex
3-cover or not, and to return such a cover if it
ezists, in O(nlogn) time and O(n) space.

5 Conélusion

In this abstract, we described an O(k*m3%*—3)
time and O(k*m?*~2) space algorithm that de-
termines whether the boundary of a polygon P
can be covered by k or fewer convex subpolygons
of P whose critical vertices belong to a subset X
of bd(P) of cardinality m. We then character-
ized polygons whose boundaries admit a convex
3-cover, and presented conditions under which
these covers of their boundaries can be extended
to covers of their interiors. This allowed us to
derive an O(nlogn) time and O(n) space algo-
rithm to recognize polygons that admit a convex
3-cover.

The methods used in Section 2 can be extended
to obtain algorithms for several other problems.
These problems are those in which only a con-
stant amount of information about covers of two
adjacent subchains of bd(P) need to be main-
tained in order to determine covers of their union.
Such problems include covering the boundary of
a simple polygon with r-spirals, and covering the
boundary of orthogonal polygons with rectangles.
These algorithms run in time polynomial in m for
each fixed value of k.

It also follows from the algorithm presented
in Section 2 that the style of constructions used
in most NP-Hardness results for covering prob-
lems [O’R87, CR88] will fail to prove that com-
puting convex k-covers of the boundary of simple
polygons is NP-Hard for any fixed k.

We leave a number of questions unanswered.
In particular,in view of the facts presented in the
previous paragraph, one might conjecture that

the convex k-cover problem for the boundary of
simple polygons can be solved in polynomial time
for each fixed k. We do not know if the techniques
used in Section 3 can be extended for k > 4.
Determining whether the convex 3-cover problem
can be solved in o(nlogn) or has an Q(nlogn)
lower bound also deserves investigation.
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