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Abstract

A polyhedron consists of faces, their incidences, and
an assignment of faces to point sets in R4+, A
polyhedron separates R%*! into an unbounded and
bounded component. The point inclusion test for
polyhedra reports whether a point belongs to the
bounded component. )

We present an algorithm for point inclusion in
general dimension polyhedron. Ours is the first
combinatorial algorithm without special cases for
singular inputs. In addition, we allow imprecisely
specified faces and round-off error. This is the first
point-in-polyhedron algorithm to work in general
dimension with arbitrarily imprecise data and arith-
metic.

We represent imprecision by assigning an open,
convex set to each face. The open sets are called
bozes and represent the possible locations of a fea-
ture. We then prove that point inclusion in a precise
or an imprecise polyhedron can be reduced to the
odd/even parity of a vertex subset.

1. Introduction

Polyhedra are geometric objects commonly used
to model real-world data on a computer. Point
inclusion for polyhedra is a basic geometric oper-
ation for point membership classification. In con-
structive solid geometry, objects are composed by
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set operations on primitive and previously construct-
ed objects. Point inclusion is the first step in adding
an object to a representation. Point classification is
also important for clipping, geometric intersection,
and ray tracing [13] [5].

Typically, one tests for point inclusion by shoot-
ing a ray from the point to infinity. If the ray
crosses an odd numberof facets, the point is inside
the polyhedron. This crossing parity test is a corol-
lary to the generalized Jordan-Brouwer Separation
Theorem [12]. As often happens with geometric
algorithms, there are a number of special cases to
worry about. For example, the ray could intersect
an edge or vertex, or an edge could be a subset of
the ray. These are called singularities and are mea-
sure zero events. In other words, such singularities
almost never occur (in theory). Unfortunately, on
a discrete digital computer “almost never” can be
“alarmingly often.”

We handle singularities and/or imprecision by
reducing point inclusion to the odd/even parity of
a vertex subset. Each step of the reduction identi-
fies a set of facets that might intersect the test ray.
By allowing such uncertainty, we can treat singu-
lar cases as if they were non-singular. The bound-
ary of this set does not intersect the test ray. We
project the boundary to a perpendicular hyperplane
and perform point inclusion in one lower dimension.
We call it the Flashlight algorithm because, with
imprecision, a test ray is like a flashlight’s beam
that illuminates many facets, some of which, per-
haps, would be missed by a single ray. This is the
first point inclusion algorithm to work in general
dimension for arbitrarily imprecise data and arith-
metic.
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Other solutions have been published for point
inclusion. In 3-d, Kalay merges faces when a sin-
gularity is detected [8], and Horn and Taylor tests
the orientation of nearby features [7]. In general
dimension, Corkum and Wyllie randomly rotate the
polyhedron [2]. Lane, Magedson and Rarick project
each facet to a sphere and sum the projected areas
[10]. If the arithmetic is sufficiently imprecise or
the input sufficiently large, neither of the general
dimension algorithms will determine an answer.

Besides solving a geometric problem, Flashlight
demonstrates a practical approach to handling im-
precision. We model imprecision by assigning a con-
vex set, called a boz, to each geometric feature. A
box constrains the possible locations of the feature
and the maximum effect of roundoff error. A box
is the geometric equivalent of an interval in inter-
val arithmetic [11]. Once an algorithm is designed
for boxes, imprecision and roundoff error are sim-
ply parameters of the implementation. Imprecision
and roundoff errors are active topics in computa-
tional geometry. Two other models are e-geometry
[4] and the reasoning paradigm [6]. See [3] for a
discussion.

Section 2 reviews the mathematics we will use.
Section 3 presents the Flashlight algorithm for
precisely specified polyhedra. Section 4 presents
the Flashlight algorithm for imprecise polyhedra.
Section 5 proves the correctness of Flashlight. For
missing proofs, see [1].

2. Definitions and Notation

For simplicity of presentation, all our polyhe-
dra will be simplicial complexes. Our point inclu-
sion algorithm, Flashlight, would work equally
well with any reasonable definition of polyhedron
in which the faces are convex [1].

DEFINITION 2.1. A d-dimensional polyhedron is a
simplicial d-complez in R%t! satisfying conditions
of twoness and minimality on its d-faces (hence-
Jorth called facets). The twoness condition is that
each (d —1)-face (called a ridge) is a face of ezactly
two facets. The minimality condition is that no
non-empty proper subset of the facets satisfies the
twoness condition.

Like the other algorithms, we use crossing parity
to determine if a point is inside a polyhedron. Our
algorithm is recursive. The recursive step does not
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preserve the twoness and minimality conditions of a
polyhedron nor the intersection properties of a sim-
plicial complex. For this reason we generalize the
polyhedron to require an evenness condition and to
allow overlapping facets. Given the following defi-
nition, the proof of Theorem 2.4 is straight-forward.

DEFINITION 2.2. A d-dimensional generalized poly-
hedron in R" is the image of a simplicial d-complez
K under a map f to R*. The simplicial complez
K satisfies the evenness condition, i.e. each ridge
occurs in an even number of facets. The map f
must be continuous on R" and an affine map on
each facet.

LEMMA 2.3. Let P be a generalized polyhedron of
dimension d in R"™. Let S be a subset of facets of P.
Then 8S is a generalized polyhedron of dimension
d-1in R".

PROOF: Suppose that there were some ridge r of
95 that was a face of an odd number of facets of 3S.
Then r is in 83S. But, for any simplicial complex,
98S =0 [12]. - 1

THEOREM 2.4. Given a generalized polyhedron P
of dimension d and a point ¢ € R4+ —P, the cross-
ing parity for q is well defined i.e., the crossing par-
ity of a curve from q to the unbounded component
is independent of the curve.

3. The Flashlight algorithm for
precise polyhedra

Let P be a polyhedron in R%+! and ¢ be a point
in R4! — P. The function Flashlight(P,g,d)
classifies ¢ as inside, outside or on P. Flashlight
is a recursive algorithm that reduces the problem’s
dimension. '

Each call to Flashlight selects a subset of the
facets called the “front half”. We say a facet is in
front of g if it intersects the test ray and behind ¢
if it intersects the opposite test ray. The front half,
P4, is the facets that are in front of . Flashlight
reduces the problem’s dimension by projecting 8P
to a perpendicular hyperplane for the test ray. See
Figure 3.1 for the algorithm and Figure 3.2 for an
example. (The words in brackets in Figure 3.1
should be ignored; they are used in the algorithm
for the imprecise case.)
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for each facet f of P

ifd>0

else

Algorithm for Flashlight(P,g,d)
let P be a set of facets (the front half), initially empty
let H be a hyperplane perpendicular to the dth test ray

if f is [maybe] in front of ¢ then
if f is [maybe] behind g, return [maybe] on
else append f to P,

return Flashlight(zg0P,, 7gq, d-1)

if [P4| mod 2 = 1, return [clearly] inside
else return [clearly] outside

Figure 3.1: Flashlight tests if point ¢ is inside polyhedron P in R%t!. [Words in brackets are used in

the imprecise case.]

THEOREM 3.5. Let P be a polyhedron and let H
be a hyperplane perpendicular to the test ray from
a point q. The crossing parity of q relative to P
in R¥! is the same as the crossing parity of Trq
relative to ngdP, in H.

The proof of Theorem 3.5 uses the following con-
struction. Pull apart the front half and its comple-
ment while stretching the boundary. We can do this
without changing the inside/outside classification of
the point. Eventually a perpendicular hyperplane

separates the two parts. A test ray in this hyper--

plane has the same crossing parity as the original
test ray. So intersecting this hyperplane with the
stretched boundary gives us a similar classification
problem one dimension lower. In an implementa-
tion, the stretching and intersecting is accomplished
by projecting 3P to the hyperplane.

THEOREM 3.6. (CORRECTNESS FOR POLYHEDRA)
Let P be a polyhedron and g be a point in RI+1 — P,
Flashlight computes the crossing parity of g.

PROOF: ~ Flashlight projects 8P, to H and
recurses on the new generalized polyhedron. The-
orem 3.5 guarantees that this reduced problem has
the same answer as the original. The recursion ter-
minates when d = 0 and P is just an even number
of points. A ray either crosses, or misses a point in
R—there are no singularities. Thus when d = 0,
the crossing parity of ¢ is the size parity of P,. [

Notice that the algorithm and its proof of correct-
ness used very little geometric information about

the location of a facet and its faces—only whether
a facet can be translated relative to the test point.
The proof is valid so long as the P, contains all
facets that are in front of ¢ and none that are behind
g. This flexibility makes Flashlight ideally suited
for imprecise data and arithmetic.

4. The Flashlight algorithm for
imprecise polyhedra

In the previous section we assumed that the poly-
hedron was precisely specified, and that the com-
puter could do all computations exactly, as did the
combinatorial algorithms mentioned in Section 1.
Unfortunately, this is not, in general, the case.

DEFINITION 4.7. An imprecise (generalized) poly-
hedron P is a (generalized) polyhedron whose faces
are each known to be inside some open, convez set
called the face’s box. The ezact location of a face
is unspecified. The boz for higher-dimensional faces
contains the convez hull of the bozes of its sub-faces.
The trace of P, trace(P), is the union of the bozes
of P.

Given an imprecise polyhedron, we can deter-
mine some facts with certainty, but not others. For
instance we can determine that the test ray does not
cross a facet when the test ray misses the facet’s box
entirely. But if the test ray goes through a ridge’s
box, it may or may not cross a facet. This incom-
plete information is enough, however, to perform
the reduction step of Flashlight.
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Figure 3.2: Flashlight reduces point inclusion to a subset of the vertices. In this case, the subset
contains one vertex, u, so the point ¢ is inside the cube.
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Figure 4.3: Examples of how the Flashlight classifies imprecise geometric objects.

We call the relationship of a test ray not inter-
secting a facet, not infront. We can test for not
infront with certainty. The negation of not infront
is maybe infront. Some instances of maybe infront
will intersect the facet while others will miss the
facet. For the opposite test ray, the correspond-
ing relations are not behind and maybe behind (See
Figure 4.3). Flashlight for imprecise polyhedra
differs from the precise version only in the quali-
fiers “maybe” and “clearly” for the return values of
the tests and Flashlight itself. See Figure 3.1.

The complexity of Flashlight is easily upper
bounded by noting that Flashlight examines each
face at most once. If facet crossing is tested in con-
stant time, Flashlight is linear in the number of
faces. For n vertices, the maximum number of faces
for a d-polyhedron is O(nl%/2) [9]. In practice, of

course, the boundary of the front half is a small
subset of the input, and this is a generous over-
estimate.

5. Correctness proof for Flashlight

The proof of Flashlight under imprecision is
very similar to the proof with precise data and
arithmetic. We simply substitute boxes wherever
a facet’s simplex appears. We can still perform the
translations of the front half and its complement.
So if crossing parity is well-defined, Flashlight
determines point inclusion for imprecise polyhedra.
In this section, we sketch the proofs that crossing
parity is well-defined and that Flashlight is cor-
rect. These proofs are considerably more difficult if
we allow non-simplicial polyhedra [1]. To define the
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realization K

Figure 5.4: Multiple realizations of an imprecise polyhedron are homotopic. In this case, each realization
is a pentagon, and the homotopy is space between them.

crossing parity of an arc and imprecise polyhedron,
we introduce the concept of a realization.

DEFINITION 5.8. A realization of an imprecise (gen-
eralized) polyhedron P is a (generalized) polyhedron

K with the same subface relations as P. The ver-

tices of K are contained in the corresponding bozes

of P.

Since the box of a face is convex, it includes the
corresponding face of the realization. By Theorem
2.4, crossing parity is well defined for a realization.
We need to show that all realizations yield the same
crossing parity for a point. To do this, note that
all realizations are homotopic. This is essentially
an immediate consequence of the convexity of the
boxes (see Figure 5.4 in lieu of proof).

Recall Theorem 2.4 which says that the cross-
ing parity between two points and a polyhedron is
independent of the path. We now show it is also
independent of the realization.

THEOREM 5.9. Let K and L be realizations of a
d-dimensional imprecise, generalized polyhedron P
in R, and let ¢ be an arc between points q1,¢2 €
R%! — trace(P) in general position with respect to
K and L. Then the crossing parity of c and K is
equal to the crossing parity of c and L.

PROOF: Let H be the image of the homotopy from
K to L and consider cNH. This is a union of disjoint
intervals of c. The endpoints of the intervals are the
points of cNK and cNL. There are an even number
of endpoints, so the the parities of cN K and ¢cN L
must be equal. ' [ |

DEFINITION 5.10. Given an imprecise, generalized
polyhedron P and a point g € R4 — trace(P), the
crossing parity for g relative to P is the crossing
parity of q relative to any realization K of P.

The following theorem is immediate from Theo-
rems 2.4 and 5.9 o

THEOREM 5.11. Given an imprecise, generalized
polyhedra P and a point ¢ € R — trace(P), the
crossing parity for q is well defined.
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THEOREM 5.12. (CORRECTNESS OF Flashlight)
Let P be an imprecise polyhedron and q be a point in
R4+! — trace(P). Flashlight computes the cross-
ing parity of g.

PROOF: Flashlight correctly computes the cross-
ing parity relative to a realization of P (Theorem
3.6) which equals the crossing parity relative to P
(Theorem 5.11). [ ]
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