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Abstract

Several algorithms are presented for approximating an orthogonal rotation matrix M in three di-
mensions by an orthogonal matrix with rational entries. The first algorithm generates an approximation
M2(M, €) with accuracy € and 2b+4-bit numerators and a common 2b+ 4-bit denominator (bit-size 2b+4),
where b = [—Ige€] (e &~ 27°). The second algorithm uses basis reduction to generate an approximation
My (M, ¢) with accuracy €*/!-* and bit-size vb for some 1.5 < v < 6 (but v cannot be controlled except
by trial and error). A third algorithm, based on integer programming, generates optimal Mop: (M, €) with
accuracy ¢ and bit-size proven to be no more than 1.5b. In practice, the second algorithm generates an
approximation with » & 1.5 and is much faster than the third algorithm. The best bit-sizes which one
could obtain using previously known results in two dimensions [1] are more than 3b bits for numerator and
denominator. Applications are described for the approximation functions in the-area of solid modeling.

1 Introduction

Certain numerical issues must be resolved in order to implement an algorithm of computational geometry as a
computer program. The implementation can use exact or rounded arithmetic. If rounded arithmetic is used,
1t is necessary to deal with topological inconsistencies and numerical error. Exact arithmetic does not present
these problems, but it has, in general, much higher cost than rounded arithmetic.

Let us suppose we choose to use exact arithmetic. It is desirable that all operations be within the field of
rational numbers. This is difficult to accomplish for constructions or computations involving rotations, such
as solids modeling or robotic path planning. Orthogonal rotation matrices!, often defined in terms of Euler
a'ngles ¢1 ¢) 0’
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have entries which are irrational and non-algebraic except for very special choices of input angles. What is
desired is the following: a function Mpprox (M, €) which takes an arbitrary orthogonal matrix M and accuracy
€ > 0 as input and returns an orthogonal matrix that has rational entries and which approximates M to within
€

'T'E’H(M — Mapprox)v| < €. (2)

At the ACM geometry conference last year, Canny, Donald, and Ressler [1] presented a technique for generating
rational two dimensional rotation matrices. For any two dimensional rotation matrix M , their technique can
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!Matrix M is orthogonal if Mt = M~=1 . These are sometimes called orthonormal.
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generate a rational matrix with accuracy 2% and rational entries with 5-bit numerators and a common b-
bit denominator (bit-size b). This is the worst-case behavior of their technique. Given a desired rotation
angle 6, they use the standard rational parameterization of the unit circle, sinf = -l-%’t—, and cosf = iﬁ;,
where t = tan(d/2). They then apply a variation of known techniques for finding the solution to the best
approzimation problem? (see [10][8]) to find the best rational approximation for ¢ with accuracy €. This leads
to the best rational approximationto M. Since their technique generates angles with rational sines and cosines,
it can be used to create rational three-dimensional orthogonal matrices through the use of Equation 1 above.
However, this results in an increase in bit-size to roughly 3b numerator and denominator, which is far from
the best possible.

In this paper, we present a technique based on quaternion arithmetic for directly generating three dimensional
rational orthogonal matrices. This technique reduces the matrix approximation problem to that of finding
simultaneous rational approximations, p1/po, p2/Po, p3/po to real numbers a1, a2, @s. We prove that the best
simultaneous approximation leads to the best rational matrix approximation. A naive approximation, setting
po = 2° and finding the best p;, ps, p3, yields M2(M, €) with bit-size 2b + 2 and accuracy € = 27°.

Using the basis reduction algorithm of Lenstra, Lenstra, and Lovasz [10] [9], we describe a method of approx-
imating a; by pi/po, ¢ = 1,2,3 with a “smaller sized” po for a given accuracy. However, it does not give as
good a control on the accuracy attained. For any given n > 0, it finds an integer py < 87~3 such that there is
an approximation to M with accuracy 1/po and bit-size 2[lg po]. If we set 1 = €}/4 and if py is near its upper
bound, then the accuracy will be ¢ and the bit-size close to 1.5b for b = —Ige. If pg is small, we do not attain
the desired accuracy. In the worst case, we have to set 77 = ¢ and then we obtain accuracy e* (much closer
than we wanted) and bit-size 6b. Thus the approximation is M, (M, €) with accuracy €” /15 and bit-size vb for
some 1.5 < v < 6. This method generates good approximations in practice, because it takes only a few tries
to find po near its upper bound. This technique yields accuracies of ¢ = 10~° in a few seconds on a 30 MIPS
workstation. The basis reduction algorithm runs in strongly polynomial time.

Finally, we prove that the optimal approximation Mopt(M, €) has bit-size at most 1.5, and we show how to
apply integer programming to find an approximation Mopt(M, €) within one bit of optimal. This can be solved
in polynomial time using an algorithm of Lovasz and Scarf [11] which has been implemented by Cook, et al
[3]. We plan to run tests of the running time, but it is probably most practical to use the older basis reduction
method.

1.1 Applications

Currently, there is no reasonable way to implement a computer system that can model polyhedral objects.
Such a system would have half-spaces (such as {(z,y,2)|z > 0}) as primitives and would allow at least the
following operations:

o regularized set operations: union, intersection, complement, difference;
o Euclidean transformations: translation, rotation, scaling;

e convex hull.

There are no known robust algorithms for implementing such a system in rounded floating point arithmetic.
Actually, one can describe combinatorially consistent algorithms for these operations, but there are imaginable
cases for these algorithms which have unbounded numerical error.

If one implements such a system using exact rational arithmetic in a standard fashion, then there are sequences
of operations which have exponential growth in bit-complexity. For instance, intersecting three polyhedra
might generate a vertex which is the intersection of three faces. Taking the convex hull will generate a face
containing three vertices. Generating a point from three planes and generating a plane from three points in
each case trebles the number of bits in the representation. This example is clearly not a proof, but we expect
that for any exact algorithm, the bit-complexity will grow exponentially in the worst case.

2Given a number o € Q and an € € Q, € > 0, find a rational number p/q such that ¢ > 0, jo — p/g| < € and g is as small as
possible. .
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.

We see the design of a practical solid modeler as consisting of three parts: fast integer arithmetic for geometric
constructions, rational Euclidean transformations, and geometric rounding.

It is commonly understood that geometric constructions depend on the signs of arithmetic expression on the
input coordinates, not the actual values. This fact is what makes the use of rounded arithmetic so perilous:
the sign function has infinite relative error for inputs near zero. On the other hand, there are ways to compute
the sign of integer expressions which are practically and/or theoretically more efficient than determining the
actual value. Karasick, Lieber and Nackman [7], Clarkson [2], and Fortune and Van Wyk [5] have given results
in this area, of which the latter is perhaps the most practical.

This paper describes how to obtain rational orthogonal matrices in three dimensions. From these, arbitrary
rational Euclidean transformations can be constructed.

Even if multiple-precision operations can be made relatively cheap, some means must be developed for over-
coming the exponential growth in the bit-complexity of the polyhedra. The first author and Nackman [12]
have shown that finding the minimum-perturbation rounding of the coordinates to lower precision, without
changing the combinatorial structure, is an NP-complete problem. However, this author has proposed tech-
niques [13] [14] that round to lower precision and change the combinatorial structure in a reasonable way.
The first author and Nackman are also working on heuristics for rounding without changing the combinatorial
structure. ‘

It is hoped that by combining different techniques, one could offer a solution to the solid modeling problem,
which the field of computational geometry has so far failed to provide.

2 Algorithms for Constructing Rational Orthogonal Approxima-
- tions

Our goal is to construct a rational rotation matrix Mapprox Which approximates a; arbitrary rotation matrix M.

This section shows how to reduce this problem to that of finding a good simultaneous rational approximation

P1/Po, P2/Po, P3/po to three real values a1, az,a3. It is also shown that the best approximation to the a’s
yields the best approximation matrix Mapprox-

2.1 Quaternion Arithmetic

For purposes of this abstract we summarize the quaternion representation of orthogonal matrices by saying
that an arbitrary quaternion takes the form, Q = Qq + Qi + Q27 + Q3k where i, j, k are square roots of —1.

A theorem by Rodriguez [4] shows that the following matrix is a rotation matrix:
QRB+QI-Q3-0QF 2@1Q2-QoQ3)  2(Q1Qs+ QoQ2)

MQ=(@+Q2+Q2+Q) | 2Q.0:1+ QoQs) QF-QI+Q3-Q3 2(Q:Q:-Q0Q1) |. (3)
2(QsQ1 ~ Q0Q2)  2(Q3Q2+QoQ1) Q3 -Q?— Q%+ Q3

Given angle 6 and unit vector u € R3, we define a unit quaternion

6 . 6. 6, .6 . .68 4
q(6,u) = cos 3 +sin gl=cosg + sin FUsi+sin 5tJ +sin —Q-uzk. (4)
M (g(8,u)) is the rotation with angle # and axis u.

We note that if the components of Q are b-bit integers, then the entries of the matrix will have b = 20’ + 2
bits in the numerator and a common b-bit denominator.

2.2 Constructing Q(M)

The first task in the approximation of an orthogonal transformation M is the construction of a quaternion
Q(M) which generates M. If the axis u and the rotation angle 6 are known, then Equation 4 yields g(M)
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directly. If M is given as a matrix (r;;)1<i,j<3, then the following can be shown from Equation 3 (see [16]):

14711+ ro2+fa33 T3z — 23 13 — 731 T21 — 12
T32 — T23 147 —re2—ras M2+ T r13 4 T31 -
r13 — 131 ri2+ 721 1-ri1+7r22—133 r23 + 32
T21 — T12 ri3+ 731 r23 + 732 1—ry;—rog+ra3
‘13 9031 9092 4093 ']
190 97 N9z N9 | _ 4| 2 5
4200 9201 9% 9243 o |[2 2 e sl (5)
9390 4391 4392 q% q3

where ¢ = go+¢1%+ 927 +¢sk is a unit quaternion that generates M. As one can see, every row is proportional
to the components ¢. In case we are using floating point arithmetic, it is important to select the row which
contains the maximum diagonal element 4¢?. We call the row selected in this fashion Q(M). By this selection,
one avoids using a degenerate (all-zero) row. This computation is numerically accurate in floating point since
Q(M) = 4qiq, where |4¢;] > 2. The absolute error of 3 per component, where u is the rounding unit, is
- converted into an absolute error, 3u/(4¢;), after normalization. This error is bounded by 1.5.

Implementation note: If we define oo = r1; +722+733, then each diagonal element can be written 142r;; —rqo,
i =0,1,2,3. Hence, determining the maximum diagonal element is equivalent to finding max{roo, 711, 722, r33}-

2.3 Generating an Approximation

Define Qu(M) = Q(M)/Q;i(M), where Q;(M) is the largest magnitude component of Q(M). Suppose, without
loss of generality, that ¢ = 0, and thus the components of Q. (M) are (1, a1, a2, @3). We need to find integers
P1, P2, P3, Po such that,

;- —| < —= i=1,2,3. - 6

o - B < o5 , ©
It can be shown that setting Qapprox = Po + P11 + p2j + psk and then generating the corresponding matrix
Mapprox yields an € approximation to M that satisfies Equation 2. Accuracy € for Mypprox is equivalent to
accuracy € for Qapprox/|@approx| and is equivalent to accuracy €/2+/3 for the approximation to aj, az, as.

2.4 Finding the Best Approximation

The following two lemmas show that the best (smallest bit-size) rational approximations p; /po, p2/pe, P3/Po
to real numbers oy, s, a3 with accuracy €/2v/3 have bit-size at most 0.75b (b = —lge as usual), and this
leads to a 1.5b-bit approximation to a matrix M. Furthermore, the best rational matrix approximation can be
found by determining the best rational approximation @, a2, a3 with accuracy €¢/2+/3. Therefore, the optimal
approximation Mqpe (M, €) to M with with accuracy € has bit-size at most 1.5b.

Lemma 2.1 Given 0 < a3, a2,a3 <1 and 6/2\/§ ~ 27%, there exists 0.75b-bit integers p1, p2, P3, po such that
|C¥i - Pz/POI S 6/2\/§y i= 1,2) 3.

Proof. Ignoring the factor of 24/3 for simplicity (it changes things by at most two bits), for —20-7% <
P1,P2,P3,P0 < 20752, there are roughly 23 lattice points of the form (p; — poa1, p2 — poaz, ps — poa3) inside
a cube of size 2075, Therefore two lattice points must lie distance 2-%-2%® apart (under Lo, norm). Their
difference is also a la,ttlce point. D1v1dmg through by po yields a point of the form (p;/po — al,pz/po -
az,p3/po — a3) at distance 27° from the origin. Thus the resulting p;, p2, ps, po satisfy the theorem. O

These 0.75b-bit p’s yield a 1.5b-bit approximation matrix. We can turn this around to show that a good
approximation matrix implies a small bit-size integer Q(M).

Lemma 2.2 A rational 2b-bit sized rotation matriz Mapprox corresponds to a b-bit or smaller sized integer
quaternion Qapprox-
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Proof. Given a rational matrix, we can clear fractions and solve for 2go, 2¢1, 2¢2, 2¢3, using Equation 5 above
(the 1’s on the left are replaced by the common denominator in the matrix). Each 2g; is the square root of
an integer: 2¢; = Q;+/m;, where m; is square-free for i = 0,1, 2, 3. However, the fact that 44¢;q; is integral for
each pair implies that m; = m, = m3 = my. Therefore, the quaternion Qo + Q1i + Q25 + Q3k generates the
rational matrix by Equation 3, and the @’s have at most half the bit-size of the entries of M. 0O

Comment: What if the rational matrix does not have a b-bit common denominator, as this proof requires?
The answer is that rotating an integer vector by the matrix (which is the eventual application) requires that
the entries be adjusted to have a common denominator anyway so that the fractions can be summed. In other
words, it is only fair to compute the bit-size of a rotation matrix if its entries have a common denominator.

3 Generating Simultaneous Rational Approximations

We have reduced the problem of finding an approximating rational rotation matrix to that of finding rational
approximations with a common denominator to three real values oy, az,a3. As pointed out in Section 3, it
is easy to generate an e-accurate (e & 27°) set of rationals by setting the denominator po = 2° and choosing
the best numerators p;, p2, p3. The resulting approximation matrix M>(M, €) has bit-size 2b+ 2. This section
explores algorithms for finding smaller bit-size approximations. The first algorithm using basis reduction yields
a 1.56-bit matrix in practice, but is not guaranteed to find the best approximation. A second method, based
on integer programming, can find a near optimal approximation. Both algorithms run in polynomial time,
but the first is probably the most practical.

3.1 Approximation by Basis Reduction

Basis reduction is a process that finds a “short” set of basis vectors for a lattice:-To find an approximation to
a1, a2, az, one reduces the basis, B

(1)010)0)) (0)1’0)0)’ (OwO:I)O)) (alaa2ya3"—z)y‘

where z is a parameter chosen to control the accuracy and bit-size of the approximation. Each reduced basis
vector is some integer combination, (p; —poa;, p2 — poas, P3—poas, poz) of the four original vectors. Assuming
one can find a reduced basis vector such that the first three components are roughly equal to or smaller than
the fourth component in magnitude, then |p;/po — ;| < z. One can set z equal to the desired accuracy
€/2v/3. Incidentally, it is required that o, a2, 3 be rational, so that one must replace them with rational
approximations o>, a5, af**. It is easy to generate these rational approximations using continued fractions
since they do not have to have a common denominator. If |af2 — a;| < €/4v/3 for i = 1,2,3, we must set
z = €/4v/3 to obtain the desired accuracy.

The Lenstra, Lestra, Lovasz [9] algorithm for basis reduction is a part of MAPLE and other mathematical
packages. It is not known how to determine the value of z that leads to the smallest po. However, in practice
after a few tries with slightly different z, one can generate a good approximation.

As far as guaranteed behavior, Lovasz [10] indicates that basis reduction leads to a polynomial-time algorithm

that takes 7 > 0 and a rational vector (i, @s, . ..a,) as input and returns integers p1,p2, . - ., Pn, po such that

)

|oj .I Si for j =1,2,...,n,and 0 < pg < 2"(»+1)/4y=n
Po Po ' '

4\* |
For n =3, 0 < po < 8773, and for some 7 € [_e_ ( ) e%], Lovasz’s algorithm will return a value of p,

4/3°\3

such that - < = Setting n = ¢/4+/3 will always work, but may result in 3b-bit po. It is best if 5 is as

Po ~ 4V3

large as possible so that po is as small as possible. In practice, one finds solutions for 7~ e+ and thus po has
bit-size about 0.75b. , ‘
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3.2 Finding an Optimal Approximation

For any given accuracy ¢, a near optimal® set of py, p2, ps, po can be found in polynomial time using integer
programming. Let ¢ be a close rational approximation to €/4v/3. It is sufficient to solve,

—€'po <pi—afpo < €'po, i=1,2,3,

for integers p;, p2, p3 and minimum integer po. Recent results by Cook et al [3] show that integer programs
of this type can be solved for up to 100 variables using a polynomial-time algorithm of Lovasz and Scarf [11],
and we plan to test the practicality of finding optimal approximations with this system.

4 Conclusion

If one is willing to use a few seconds of running time on a typical modern workstation, then the basis reduction
scheme is a practical method for finding close 1.58-bit rational approximations to 3D rotation matrices. If not,
a larger 2b-bit approximation can be found using a few dozen floating point operations.

Acknowledgements: The authors would like to thank Steve Fortune for suggesting Lemma 2.2. We would also like to thank
Laslo Lovasz, Herbert Scarf, William Cook, and Jeff Lagarias for their helpful information and suggestions.
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