A Pseudo-Algorithmic Separation of Lines from Pseudo-Lines

William Steiger!+?
Rutgers University
Department of Computer Science
steiger@cs.rutgers.edu

Abstract

The z-sorting problem for lines is: sort the z-
coordinates of the intersection points of n pla-
nar lines. A similar problem can be defined for
pseudo-lines. We show a lower bound of (n?log n)
for z-sorting pseudo-lines and the existence of a
quadratic decision tree of depth O(n?) for z-sorting
lines. Let X and Y be two n element sets and let
X+Y={z+y|zeX,yeY}. Sorting X +Y
is a particular case of x-sorting lines. Fredman [4]
has shown the existence of an O(n?)-depth deci-
sion tree for this case and Lambert [9] has given
a method to actually find the O(n?) comparisons.
Here we give another very simple divide and con-
quer algorithm for sorting X + Y with O(n?) com-
parisons which only needs O(n?logn) time.

1 Introduction

Let L = {A1,---, A} be a collection of n continu-
ous functions on R with the property that for each
pair ¢ # j there is an z = z;; such that A;(z;;) =
/\j(a:,'j) and (/\,'(t) —/\j(t))(/\i(u)— /\j(’u,)) < 0 when-
ever u < z;; and t > z;;. L is a collection of
pseudo-lines. In the special case where the A; are
linear functions we have a set of distinct lines, no
two parallel. Let '
S = {:l:,'j 1<]}
be the set of the x-coordinates of the vertices AiNA;
of the collection.

L induces a decomposition of the plane into re-
gions bounded by edges and vertices. This decom-
position, A(L), is called the arrangement of the

'The authors express gratitude to the NSF DIMACS
Center at Rutgers and Princeton
2Research Supported in Part by NSF grant CCR-9111491

[leana Streinu!

Rutgers University
Department of Computer Science
streinu@paul.rutgers.edu

pseudo-lines. It is known that pseudo-line arrange-
ments have a richer combinatorial structure than
arrangements of lines: the number of combinato-
rially different pseudo-line arrangements is much
larger than the number of line arrangements, as
shown by Goodman and Pollack [6].

It would be of great interest to find a geo-
metric property (or another combinatorial prop-
erty besides cardinality) whose combinatorial ex-
pression could be used to separate line and pseudo-
line arrangements. The complexity of the k-th level
(number of k-sets) is believed to be such a property,
though with the present knowledge no such sepa-
ration can be claimed (see [11]). The same may be
said about the complexity of an x-monotone path
(see [10]).

In this paper we give an algorithmic-type of sep-
aration for these two classes via the complexity of
sorting the elements of .5, the 2-coordinates of the
vertices of the arrangement. We call this the z-
sorting problem for L. Using ideas from Goodman
and Pollack[6] (or from a straightforward reduc-
tion argument) it is necessary to make Q(n?logn)
comparisons to sort S for pseudo-lines; by apply-
ing Fredman’s result [4] on sorting under partial
information, there exists a quadratic decision tree
of depth O(n?) to sort the vertices of a line arrange-
ment. This separation is called pseudo-algorithmic
because it holds in the decision tree model, which
is a non-uniform model of computation. A truly
algorithmic separation is not known: no polyno-
mial time way of actually constructing the compar-
isons in an algebraic decision tree of depth O(n?)
is known.

Although the idea of applying Fredman’s result
to x-sorting may not be new, we have not been able
to find it in the literature. Neither does the sep-
aration observation seem to have been made. We
think that this is the first example of a problem for

8

which getting an optimal algorithm would require
the use of some property that holds for lines but not
for pseudo-lines. As many algorithms in Compu-
tational Geometry use only combinatorial proper-
ties of line arrangements they work for pseudo-lines
as well. We think this is an interesting situation,
where a geometric distinction is needed.

z-sorting for lines has an interesting special
case, the X + Y problem: given sets X and Y of
n numbers each, sort the n? sums {z; + y;|z; €
X,y; € Y}. In [4], Fredman showed that there
exists a decision tree of depth O(n?) for sorting
X + Y. Later, Lambert [9] gave an algorithm to
actually get such a quadratic depth tree. Lambert
did not give a RAM implementation for his algo-
rithm, but it seems to incur a large bookeeping
cost. In section 3 we will present a much simpler
algorithm which will construct the O(n?) compar-
isons to sort X + Y and use only O(n?logn) total
time. It is still an open problem to find an algo-
rithm for sorting X + Y in o(n?logn) time and we
think that our approach may eventually lead to a
solution to this long standing question.

2 Main Result

Given a collection L = {Aq,...,A,} of n pseudo-
lines with vertices A;(1A; we make the general posi-
tion assumption that no point meets three pseudo-
lines. This implies that in a suitable coordinate
system the set S = {zi; : ¢ < j} has () distinct
elements. The x-sorting problem for L is to order
the elements of S.

Theorem 1 There exists a quadratic algebraic de-
cision tree of depth O(n?) that does z-sorting for
lines. The depth of any decision tree that does z-
sorting for pseudo-lines is Q(n*logn).

Proof: The proof of the upper bound for lines is
based on the following result

Theorem 2 (Fredmanf4]) There ezists a decision
tree of depth at most log|P| + 2N which solves the
problem of sorting under partial information for a
set X of N elements, with partial information from
the set P.

Here X = {z1,---,zn} is an N element set and
P is a subset of the N! possible linear orderings on
X. The problem of sorting under partial informa-
tion is to identify an unknown ordering w € P by
performing comparisons between the elements of
X. A decision tree is said to solve the problem of
sorting under partial information for X if it has a
leaf for each w € P. We will be interested in the
depth of the optimal decision tree which solves the
sorting problem for X.

We apply this theorem when X = 9, the set of
x-coordinates of the N = () vertices of the given
n lines and P, the set of all possible sorted orders
of S. The x-coordinate of the intersection of two

lines y = a;z + b; and y = a;z + b; is

b; — b;

a; — a;

Ty =

Assuming that we have already sorted the slopes
al,...,ay (in O(nlogn) time), we know the sign
of the denominators. Thus the comparison between
z;; and T4 can be transformed into a comparison
between (bx — b;)(a; — a;) and (b; — b;)(ar — a;),
each product appropriately adjusted for sign. The
latter comparison is achieved in a guadratic alge-
braic decision tree. Finally, |P| can be estimated
using a result of Goodman and Pollack [6]. Once
the lines are in the order of decreasing slope, their
theorem implies that | P] = O(n®"). We get the up-
per bound for x-sorting lines by plugging this into
Fredman’s result.

The lower bound for z-sorting pseudo-lines is
information-theoretic. The number of z-sorted or-
ders of the vertices of an arrangement of n pseudo-
lines v is given by the following precise formula, in-
dependently obtained by Edelsman and Greene[2]
and Stanley[12] (cf. Goodman and Pollack [6]):

=2
1n=13n-2...(2n — 3)!

The logarithm of this is asymptotically cn?logn. It
follows that any decision tree for x-sorting pseudo-
lines has depth Q(n?logn). |

Note that the lower bound for pseudo-lines
is tight since the O(n?) intersection points of n
pseudo-lines can be sorted in O(n?logn) time by

any optimal sorting algorithm. For z-sorting lines
the situation is different. Information theoreti-
cally (i.e. in the decision tree model) the upper
bound doesn’t match the lower bound, which is
just Q(nlogn). It is an open question whether one
can do z-sorting for n lines with only O(nlogn)
comparisons or whether a better lower bound is
possible. Neither do the bounds match in the gen-
eral (RAM) model of computation, where a lower
bound of (n?) can be obtained just from the com-
plexity of writting down the sorted list of vertices.
It’s an open problem to do z-sorting for lines in
o(n?logn) total time.

Remark: The lower bound to x-sorting for
pseudo-lines can also be obtained easily without
using the precise formula given above. We can re-
duce the problem of sorting the entries of an n by n
ordered matrix A (all rows and all columns are non-
decreasing) to x-sorting the vertices of 2n pseudo-
lines . Then we use the lower bound of Harper et
al. [8]: sorting an ordered matrix of size n requires
Q(n%logn) time. For the reduction, given A with
nondecreasing rows and columns, we want to con-
struct n pseudo-lines for which z;; = A(¢,). Just
define points P;; = (2;5,7 — 1), for 4,5 = 1,...,n
and let I = (z11,Zns). For each ¢, define (row)
pseudo-line r; as the piecewise linear function join-
ing the P;;, 7 = 1,...,n and for each j define (col-
umn) pseudo-line ¢; as the piecewise linear func-
tion joining P;;,7 = 1,...,n. The r; are non-
decreasing and the c¢; are non-increasing. Also,
ri(P;;) = ¢;(P;;) but there are no other incidences.
Finally the r; and ¢; can be extended to plus and
minus oo so the r; are increasing and each pair has
a proper intersection outside / and so the c; are
decreasing and each pair has a proper intersection
outside /. x-sorting for these pseudo-lines will or-
der the entries of A and the reduction can be done
in O(n?) steps.

3 Sorting X +Y

Given X = {zy,---,zn} and Y = {y1,---, 1},
define the lines y = 24,7 = 1,---,n and y =
z - 9y;,7 = 1,---,n. The x-coordinates of the in-
tersection points are the elements of the set X +Y
(and because of parallelism, two degenerate points

9

at infinity). This shows that sorting the cartesian
sums X + Y is a particular case of the x-sorting
problem for lines. Without loss of generality we
may take X and Y positive.

As in Lambert [9], we reduce the X +Y problem
to the problem of sorting interval sums. For a set
of m positive numbers a1, - - -, am, the (%)) interval

sums are defined to be

J
Uij=2ak,i<j- (1)

k=1

For the reduction, given X and Y, we sort them
soz; < ---<z,and 3 <--- < y,. Now define
anp, = 27 and ap—; = Tiy1 — Ti, ¢ < n; also set
Gnt1 = Y1 and apgjp1 = Y41 — Y5, 7 < n. It follows
that

n+j

Z Ak = Op—itlntj-
c=n—1+1

Ti+Yy; =

The reduction uses quadratic time to obtain the
interval sums. Once the o;; are sorted, so are the
sums X + Y.

At this point remember what we mean by sorted
in the two computational models that we are us-
ing: the decision tree and the RAM model. In
the decision tree model, only comparisons between
0;;’s are counted and they cost one unit. Each an-
swer splits the set of possible total orders compat-
ible with the answers received so far into two sub-
sets. We say that a sequence of comparisons has
sorted the interval sums if the set of comparisons
has a unique permutation compatible with the re-
sults of those comparisons. In the RAM model,
by sorted we mean that we have p(o;;), the rank
of each of the N = (%) interval sums and also.
for each k = 1,..., N, that we know the o;; with
p(0i;) = k (or equivalently, that the interval sums
are arranged in a linear array L; < --- < Ly).

Theorem 3 The interval sums S = {cr,-j = a; +
-+ 4 aj,i < j} over a set of n positive numbers
ai,...,a, may be computed in O(n?) comparisons
(between o;;’s) in time O(n?logn).

Proof: We describe a RAM algorithm with the
stated complexity. Let T be the partial order over

10

o1z 933

Figure 1: The lattice poset associated with the in-
terval sums over a;,---,ay,
S induced by the relations

0ij-1 L 0;; and 0y 2> Oiq1 5.

We can represent T as the lattice poset in Figure 1,
with triangular shape, 01, on top, and o;; having
left child 0ij-1 and right child Oit1,j-

The algorithm uses a divide and conquer ap-
proach. Assuming n is even we split T into two
smaller triangles 77 and T and a diamond D (see
Figure 2):

Th={oij, i<ji<z=h Tz={0sj,-2-<z<1};

. n . n
D={0'{j,2_<_§,]>'§}.

Fig.2. Sorting interval sums in T recursively.

It is used as follows.

Algorithm SORT(T)

1. Split T into Ty, T,, and D.
2. Run SORT(Ty) and SORT(T3).
3. Sort T; U T; by merging.

4. Sort D

5. Merge D and T} U T>.

Step 2 applies the present algorithm recursively
to the elements in 77 and T%. When it is completed,
the interval sums from 7T; are in a sorted array L,
and those from T2, in a sorted array Lz. Step 3
merges these arrays into the sorted array L.

To sort the n? elements in D we follow the con-
trol of any optimal O(n?logn) sorting algorithm.
A typical step will ask for comparisons between o,
and oy, elements of D. We may assume r < u. If
also s > v then by (1) and additivity, 0,5, > Oyu,
and no work is required for this comparison. Oth-
erwise note that '

u-1 v
Ors — Ouy = Z a; — Z ai = Ory—1—"0s41,0- (2)
i=r 1=s+1

Also 0,41 € T1 and 0,414 € T3. Since T U T,
is already sorted, the sign of the difference of these
two interval sums is obtained at no cost in the com-
parison model, and at unit cost in the RAM model,
namely the cost of comparing p(o,,) with p(osy);
the whole cost of step 4 is O(n?logn) in the RAM
model.

Let C(n) be the comparison complexity of

- SORT(T) when T represents interval sums of a; <

-++ < an, and R(n), the RAM complexity. There-
fore

n?

n? n, n?
< —_ - —_— 2
R(n) < 2+2R(2)+4+om logn+2

The five terms on the right are the costs of the
above steps. The relation is satisfied by R(n) =
O(n?logn).

From the RAM algorithm SORT it is straight-
forward to construct a decision tree for a fixed n.
Here only steps 2,3 and 5 need to be considered.
Step 4 may be ignored, since by (2) there is a
unique permutation of the o;; € D that is com-
patible with the merge in step 3. This means that:

2

2
Cln) S20(3)+ - +

n
5
The first term is the cost of step 2, the next of step
3, and the last of step 5. We get C(n) = O(n?). |

4 Final Remarks

For x-sorting vertices in line arrangements, it is not
even known how to construct a quadratic depth de-
cision tree whose existence is guaranteed by Theo-
rem 1. We do not know how to do this even for the
particular case when the n lines are the duals of
n points in convex position. This arrangement has
a simple lattice structure, so it is as close to the
structure of the X + Y problem that we can get
with general lines. However we do know that to
carry out such a construction it will be necessary
to utilize geometric properties - and their combina-
torial expression - that are not satisfied by general
pseudo-lines .

Acknowledgement: We thank Hari Ham-
papuram for valuable conversations.

References

[1] R.Cole, J. Salowe, W. Steiger and E. Sze-
merédi, An Optimal-time algorithm for Slope
Selection, SIAM Journal on Computing 18,
792-810, 1989

(2] P. Edelman and C. Greene, Combinatorial
correspondences for Young tableauz, balanced
tableauz, and mazimal chains in the Bruhat
order of S,, in Combinatorics and Algebra,
Contemporary Math., vol. 34, American Math-
ematical Society, 1984.

[3] H. Edelsbrunner, Algorithms in Combinatorial
Geometry, Springer-Verlag (1987).

11

[4] M. Fredman, How good is the Information
Theory bound in Sorting?, Theoretical Com-
" puter Science 1, pp. 355-361, 1976.

[5] J.E. Goodman and R. Pollack, Multidimen-
stonal sorting, SIAM J. Comput. vol. 12, No.3,
August 1983.

(6] J.E. Goodman and R. Pollack, Upper Bounds
for Configurations and Polytopes in R*, Dis-
crete Comput. Geom. 1: 219 — 227,1986.

[7] J.E. Goodman and R. Pollack, Allowable Se-
quences and Order Types in Discrete and
Computational Geometry, DIMACS Tech. Re-
port 92-1; in: J.Pach (ed.), New trends in Dis-
crete and Computational Geometry,1991.

[8] L.H. Harper, T.H. Payne, J.E. Savage and E.
Strauss, Sorting X + Y, Comm. ACM, vol.18,
n0.6, pp.347 — 349, 1975.

[9] J.L. Lambert, Sorting X + Y in O(n?) com-
parisons, STACS 1991, pp.195-206.

[10] J. Matousek, Lower Bounds on the Length
of Monotone Paths in Arrangements, Discrete
and Comp.Geom. 6, 129-134, 1991.

[11] J. Pach, W. Steiger, and E. Szemerédi. An
upper bound on the number of planar k-sets.
Discrete and Comp. Geom. 7, 109-123, 1992.

(12] R.Stanley, On the Number of Reduced Decom-
positions of Elements of Cozeter Groups, Eu-
rop. J. Combinatorics 5, pp. 359 — 372, 1934.

