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Minimal Tangent Visibility Graphs

Extented Abstract

Michel Pocchiola*

Abstract

We prove the tight lower bound 4n—4 on the size
of tangent visibility graphs on n pairwise disjoint
bounded obstacles in the Euclidean plane. We
give also a simple characterization of the set of
minimal tangent visibility graphs.

1 Introduction

Visibility and shortest path problems in a scene
consisting of disjoint polygons in the plane have
been studied extensively. Recently the scope
of this research has been extended to scenes of
disjoint convex plane sets (convex obstacles for
short). One of the combinatorial questions con-
cerns the complexity of such scenes. Qur start-
ing point is the following problem: what is the
minimal number of free bitangents shared by n
convex obstacles? A bitangent is a closed line
segment whose supporting line is tangent to two
obstacles at its endpoints; it is called free if it lies
in free space (i.e., the complement of the union
of the relative interiors of the obstacles). The
endpoints of these bitangents split the bound-
aries of the obstacles into a sequence of arcs;
these arcs and the bitangents are the edges of
the so-called tangent visibility graph. The size
of the tangent visibility graph is defined to be
the number of free bitangents, so our question
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asks for the minimal size of tangent visibility
graphs. Visibility graphs (for polygonal obsta-
cles) were introduced by Lozano-Perez and Wes-
ley [8] for planning collision-free paths among
polyhedral obstacles; in the plane a shortest Eu-
clidean path between two points runs via edges
of the tangent visibility graph of the collection
of obstacles augmented with the source and tar-
get points. Since then numerous papers have
been devoted to the problem of their efficient
construction ([19, 6, 1, 4, 7, 10, 3, 18, 14, 15])
as well as their characterization (see [9] and the
references cited therein). The more recent pa-
pers [11, 13, 12] consider the problem of the effi-
cient computation of tangent visibility graphs for
curved obstacles. This paper is concerned with
the problem of characterizing these graphs in the
case where they have minimal size. The answer
to our question is given in the following theorem
(we assume that the obstacles are not reduced to
points).

Theorem 1 The number of free bitangents
shared by n pairwise disjoint convez obstacles is
at least 4n — 4; this bound is tight. a

Configurations of n(= 4) convex obstacles with
exactly 4n — 4(= 12) bitangents are depicted in
Figure 1. These examples are easily extented for
any value of n. The 4n — 4 lower bound has been
established previously in the case where the ob-
stacles are line segments by [16] (see also (2, 17]).
We give here a different proof based on the no-
tion of pseudo-triangulation introduced in [11].
In fact we prove the following stronger result.



Figure 1: Configurations of 4 obstacles with 4 x 4 —
4 = 12 free bitangents.

Theorem 2 Consider a collection of n pairwise
disjoint convez obstacles. The following asser-
tions are equivalent.

1. Its weak visibility graph is a tree.

2. Its number of free bitangents is minimal
(i.e., 4n —4).

3. The size of its convez hull is mazimal (i.e.,
2n - 2). o

Recall that the weak visibility graph is the graph
whose nodes are the obstacles and whose edges
are pairs of obstacles which are weakly visible,
i.e., there is a free line segment whose endpoints
belong to the obstacles. The size of the convex
hull is the number of bitangents appearing on its
boundary.

To give a characterization of minimal tangent
visibility graphs we use the notion (introduced
in [12]) of visibility type of a configuration of ob-
stacles; it may be considered as a combinatorial
version of the tangent visibility graph where we
take into account the circular order of the free
bitangents around each obstacle. More precisely,
let O = {0,,...,0,} be a collection of n pair-
wise disjoint, not necessarily convex, obstacles.
We define the canonical label of a bitangent di-
rected from obstacle O; to obstacle O; to be the
symbol (ei,€'j) with e = + or — (¢ = + or -)
depending on whether O; (0;) lies, locally at the
touch point, to the left or to the right of the di-
rected bitangent. Consider now the set of free
bitangents to O; directed in such a way that O;
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lies (locally) to the left of the bitangent. These
free directed bitangents can be ordered counter-
clockwise around the obstacle O;. The circular
sequence of canonical labels of these bitangents
is called the (visible) cycle C(7). Note, e.g., that
the cycle C(i) of a collection of two convex obsta-
cles O; and O; is C(i) = (%,7)(¢, —3)(—=3,%)(J, ?)-
The collection of n cycles C(1),C(2),...,C(n)is
called the visibility type of the collection O and
is denoted by C(O).

Theorem 3 The set of minimal visibility types
on n disjoint convez obstacles is in 1-1 corre-
spondence with the set of plane labeled trees on
n nodes. a

For the sake of simplicity we assume that
each obstacle is strictly convex and has a smooth
boundary (however our results are still valid
without these assumptions). An eztremal point
of an obstacle is a boundary point at which the
tangent line to the boundary is horizontal.

The paper is organized as follows. In section 2
we introduce the notion of pseudo-triangulation
and we prove three technical lemmas. In sec-
tion 3 we prove our main results. Finally in sec-
tion 4 we generalize our results to configurations
of disjoint non-convex obstacles; we prove that
4n —4 is still a tight lower bound for the number
of free bitangents of a collection of n disjoint ob-
stacles, and we give a simple caracterization of
the corresponding minimal visibility types. Due
to the lack of space we omit most of the proofs
in this version of the paper.

2 Pseudo-—triangulation

A pseudotriangle is a simply connected bounded
subset R of R? such that (i) the boundary dR is
a sequence of three convex curves that are tan-
gent at their endpoints, and (ii) R is contained
in the triangle formed by the three endpoints of
these convex curves (see Figure 2). A pseudo-
triangulation of the set of obstacles is the subdi-
vision of the plane induced by a maximal (with
respect to the inclusion relation) family of pair-
wise noncrossing free bitangents. It is clear that
a pseudo-triangulation always exists and that
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A pseudotriangle and a pseudo-

Figure 2:
triangulation.

the bitangents of the boundary of the convex
hull of the obstacles are edges of any pseudo-
triangulation. A pseudo-triangulation of a col-
lection of three obstacles is depicted in Figure 2.

Lemma 1 The bounded free faces of any
pseudo-triangulation are pseudotriangles. n]

Lemma 2 Consider a pseudo-triangulation of a
collection of n disjoint conver obstacles induced
by a mazimal family B of free bitangents and
let F; be the set of pseudotriangles with eractly i
bitangents on their boundaries. Then we have

|B| 3n—-3 (1)
|Bl + |Fsl ++-- = 2n-2 (2)
2|+ 3|Fs|+--- = 6n-6-h (3)

lF3|+2lE!+- = 2n-2-h (4)

where h is the number of bitangents on the
boundary of the convez hull of the collection. 0O

From equation (4) we deduce that 2n—2 is an up-
per bound for k; Figure 1 shows that this upper
bound is tight. An alternative argument is the
following. The number A is also the size of the
circular sequence of obstacles that appear on the
convex hull (we call this sequence the combina-
torial convex hull of the collection of obstacles).
Since the obstacles are pairwise disjoint this cir-
cular sequence is a circular Davenport-Schinzel
sequence on n symbols and parameter 2, (i.e.,
factors aa and subwords abab are forbidden). It
is well-known (and easy to verify) that such a

circular sequence has length at most 2n—2. Con-
versely any circular Davenport-Schinzel sequence
(not necessarily maximal) on n symbols with pa-
rameter 2 can be realized as the combinatorial
convex hull of n pairwise disjoint obstacles. The
argument is very simple. Let ¢, ..., be a circu-
lar Davenport-Schinzel sequence on the alphabet
{1,...,n} with parameter 2. Now label in clock-
wise order the h vertices of a regular h-gon by
the indices of the sequence 7,...7,. The con-
vex hulls O; of the points labeled i are pairwise
disjoint (because subwords abab are forbidden)
obstacles whose combinatorial convex hull is ex-
actly ¢, ...7;. Finally we note the following sim-
ple fact.

Lemma 3 Consider a pseudo-triangulation of a
collection of obstacles, and let F, be the set of
pseudotriangles with exactly 2 bitangents on their
boundaries. Then a pseudotriangle in F, is adja-
cent to at most one other pseudotriangle in F,.0

3 Proof of the main results

We begin with a lemma.

Lemma 4 The number of free bitangents of a
collection of n disjoint convez obstacles is at least
6n—6—h, where h is the number of bitangents on
the boundary of the convez hull of the collection.

Proof of Theorem 2. Since the number of bi-
tangents between two convex obstacles is 4 it is

clear that the size of a tangent visibility graphis
bounded above by 4 times the number of edges
of the weak visibility graph. Assuming (1) (i.e.,
the weak visibility graph is a tree) it follows that -
the size of the tangent visibility graph is bounded
above by 4n — 4; since 4n — 4 is a lower bound
the size of the tangent visibility graph is exactly
4n — 4. This proves that (1) implies (2). Now
(2) = (3) is an obvious consequence of lemma 4
and the fact that 2n—2 is an upper bound for the
size of the convex hull. Now we prove that (3) im-
plies (1). According to-equation (4) of Lemma 2
we have |F;| = 0 for ¢ > 3, i.e. the 2n — 2 pseu-
dotriangles of any pseudo-triangulation have ex-
actly two bitangents on their boundaries. It fol-



lows (see Lemma 3) that the connected compo-
nents of bounded free space are pseudoquadran-
gles (i.e., the union of two adjacent pseudotrian-
gles). There are n — 1 of these pseudoquadran-
gles. Each of these connected components is in-
cident to exactly 2 obstacles and induces exactly
one edge of the weak visibility graph. Therefore

the weak visibility graph is a tree. a
Proof of Theorem 3. Omitted for lack of
space. ) a

4 Extension to non-convex ob-
stacles

Figure 3: Pseudo-triangulation of a configura-
tion of 5 obstacles. ‘

In this section we extend our analysis to con-
figurations of not necessarily convex obstacles.
An obstacle is the interior of an injective smooth
closed regular curve. Let O = {0;,...,0,} be
a family of n disjoint obstacles. We denote by
Cy the convex hull of the family of obstacles and
by C; the relative convex hull of O; with respect
to the collection of obstacles, i.e., the interior of
the shortest curve (in the closure of R?\ U7, O;)
homotopy equivalent to the boundary of O; (this
shortest curve is not necessarily injective; its in-
terior can be defined as the set of points in the
plane whose winding number with respect to the
curve is equal to +1 [5] ). The complement in R?
of the union of the C; (¢ > 1) is called free space;
the union UZ,(C;\ O;) is called semi-free space.
We denote by h; (¢ > 0) the number of bitan-
gents (counting multiplicities) on the boundary
of C; and by /; (i > 1) the number of connected
components of C; \ 0;. Set I(0) = 3", l;, and
h(0) = Y0 o hi. The set Co \ U, C; is called
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the relative convex hull of the family of obstacles.
We denote by h/(O) the number of bitangents ly-
ing on the boundary of the relative convex hull.
Observe that A(0) = h'(0) + w(0O), where w(0)
is the number of free bitangents incident on both
sides upon semi-free space (these bitangents are
counted twice in h(0)). As in the case of con-
vex obstacles we define a pseudo-triangulation
to be a subdivision of the plane induced by the
obstacles and a maximal family of pairwise non-
crossing free bitangents (see Figure 3 for an il-
lustration of these notions). Lemmas 1, 2 and 4
have their counterparts in the non-convex case,
and lead to the following generalization of The-
orem 2.

Theorem 4 Consider a collection O of n pair-
wise disjoint obstacles. Then the number of free
bitangents of the collection is at least 6n — 6 +
21(0) — h(0) +w(0O). Furthermore the following

assertions are equivalent.

1. its number of free bitangents is minimal
(i.e., 4n —4).

2. the size of its relative convez hull is mazimal

(i.e., h(O) = K(0) =2(n +1(0)-1)). O

Next we consider the problem of characterizing
the minimal visibility types. Observe that a nec-
essary condition for minimality (4n — 4) of the
number of free bitangents is the absence of semi-
free bitangents (i.e. bitangents with at least one
endpoint lying in semi-free space). A configura-
tion which satisfies this condition is called reg-
ulgr. Our first step is to represent a minimal
visibility type by a map (= plane digraph) aug-
mented with a 3-coloring of the set of edges.
According to the previous theorem the tangent
visibility graph of a regular configuration O is
minimal iff. its relative convex hull is maximal
or, equivalently (see the proof of the previous
theorem), iff. bounded free space has exactly
n — 1 + [(O) connected components, 2/(0) of
which are pseudotriangles, while the remaining
n—1-I(0) are pseudoquadrangles (i.e., the union
of two adjacent pseudotriangles). Each of these
components is adjacent to exactly 2 obstacles.
We construct a 3-colored edges map, denoted
G(0), as follows.
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green edge

Figure 4: The three types of edges of the graph G.

1. Its set of nodes is {1,...,n} where i is a
point lying inside the obstacle O;.

2. If O; and O; are adjacent along a pseudo-
quadrangle @ then we connect ¢ and j by an
undirected green edge, lying in O; U O; U Q.

3. If O; and O; are adjacent along a pseudo-
triangle T, then the canonical labels of the
two bitangents in the boundary of the pseu-
dotriangle are (4,7) and (¢, —j), or (j,¢) and
(=7,%) (up to a permutation of : and j and
reorientation of the bitangents); in the for-
mer case we connect  and j by a red directed
edge, in the latter case by a blue directed
edge from i to j (see Figure 4).

Lemma 5 The visibility cycle C(O) of a config-
uration of obstacles O determines the map G(O),
and conversely. a

It remains to characterize the maps G(O) when
O ranges over the set of configurations with min-
imal visibility type; we denote the set of these
maps by G. One can show that G is stable by
contraction of a green edge or a digon face; fur-
thermore any element in G can be reduced to a
single node by a sequence of contractions of green
edges and digons. However G is not the set of
maps reducible to a single node by contractions
of green edges and digons. It is a proper subset
that we define now. The set of admissible maps
G’ is the smallest set defined as follows, see also
Figure 5.

1. The map consisting of a single node belongs
to G'.

2. If G, and G, are disjoint maps in G’, let G
be the map obtained by connecting a node
on the unbounded face of G; and a node on
the unbounded face of G, by an undirected
green edge. Then G € G'.

3. If G, and G, are disjoint maps in G', let G
be the map obtained by connecting a node,
say z, on the unbounded face of G to one or
two nodes, say t and t/, on the unbounded
face of G by two colored directed edges, one
red and one blue, such that the orientation
of the red edge is consistent with the coun-
terclockwise orientation of the boundary of
the unbounded face of G. Then G € G'.

Observe that the coloring of the edges is superflu-
ous since it can be deduced from the embedding
(or alternatively the orientation of the edges is
superfluous since it can be deduced from the col-
oring of the edges). There are 12 unlabeled ad-
missible maps on 3 nodes depicted in Figure 6.
By recurrence we can easily shown that that any
admissible map G on n nodes is the map G(O)
of some collection O of n obstacles; the converse
is also true.

Figure 5: The two operations to construct admissible

maps.

Theorem 5 The set of minimal visibility types
on n obstacles is in 1-1 correspondence with the
set of admissible maps. a
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Figure 6: The 12 admissible unlabeled maps on 3
nodes.
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5 Conclusion

We have proven that 4n—4 is a tight lower bound
for the size of tangent visibility graphs on n ob-
stacles. We have also given a simple characteri-
zation of the corresponding minimal tangent vis-
ibility graphs (more precisely of the correspond-
ing visibility types). Our main tool is the notion
of pseudo-triangulation. It is expected that a
better understanding of this notion will give in-
sights in the characterization problem of tangent
visibility graphs.
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