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Hunting Voronoi Vertices in Non-Polygonal Domains*

Vincenzo Ferruccit

Abstract

Given three objects in the plane, a Voronoi vertex is a
point that is equidistant to each under some metric. In
this paper, we first consider the problem of computing
a Voronoi vertex for three (possibly non-polygonal) ob-
jects in the plane under the Euclidean/Hausdorff met-
ric. We only require the ability to query the closest
point on some object from a given point; the (possi-
bly complex) shape of the objects themselves could be
unspecified. Our technique is simple, robust and iter-
ative in nature: beginning from some initial point, it
computes a sequence of points based on intermediate
closest point queries. We show that this technique ei-
ther converges to a Voronoi vertex or oscillates with
some finite period and give conditions for each which
depend on the choice of initial point and shape of the
objects.

Our motivation for seeking Voronoi vertices comes
from robot motion planning: Voronoi vertices are nat-
ural havens for moving robots avoiding obstacles. We
conclude the paper by briefly describing an efficient im-
plementation of a retraction-like path planner for a pla-
nar robot based on our iterative strategy for seeking
Voronoi vertices.

1 Introduction

A familiar notion in computational geometry is the
Voronoi diagram [2, 8], which can informally be defined
as follows. Given a set of sites and a distance metric,
the Voronoi region of a site is the set of points closer
(under the given metric) to that site than to any other
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site. The Voronoi diagram is the network formed by
the boundaries of the individual Voronoi regions. In the
plane, this network is one-dimensional and is made up
of Voronoi edges and Voronosi vertices; Voronoi vertices
(edges) are the (locus of) points equidistant from the
three (two) nearest sites. If the space is bounded, the
Voronoi diagram is connected and preserves the con-
nectivity of the space. The problem of computing the
Voronoi diagram for a given set of sites is a familiar one
in the field of computational geometry and has been ex-
tensively studied.

Robot motion planning asks for determining a
collision-free motion from a start configuration to a goal
configuration for a robot moving amidst but avoiding a
set of obstacles. A well-known and intuitively appeal-
ing approach is to try and plan a motion that keeps
the robot as far away from the obstacles as possible;
this approach is often referred to as retraction motion
planning (we refer to Latombe [10] for an overview of
existing approaches). The Voronoi diagram is central
to the idea of retraction motion planning. Given the
Voronoi diagram in the planar configuration space of
a robot, retraction motion planning works by retract-
ing the start and goal configurations onto the diagram
and then connecting them via edges and vertices of the
diagram [1, 6, 12]. Whenever there exists a path, this
approach is guaranteed to find one which maximizes the
clearance of the robot.

In this paper our approach is similar. We compute
the (configuration space) Voronoi vertices of the obsta-
cles and find feasible paths between vertices that main-
tain the topology of the Voronoi diagram. While com-
puting Voronoi vertices is well-studied for polygonal (7]
and simple curved [15] obstacles, not much is known
about computing them for arbitrarily curved objects.
In contrast, the technique we have for computing the
Voronoi vertices for three obstacles, described briefly
below, does not even need the exact shape description
of the obstacles. We only assume the ability to query
closest points on obstacles to the current location, i.e.,
answers to queries of the form “given a point p and
object S, determine the closest point on S from p”.



Briefly, our method works as follows. Let three dis-
joint regular sets S, S2,S3 be given in the plane, and
choose a point p. Determine three points s; € S; which
achieve minimum distance from p. Next, compute the
point equidistant from the three points sy, s9, s3, and
let it be ¢ (in other words, ¢ is the Voronoi vertex for
the three point obstacles s;). Finally, set p to ¢ and
reiterate. We observe that the sequence of points ob-
tained in such a way often converges towards a Voronoi
vertex for Sy, .S;, S3. However, sometimes the sequence
oscillates with some period. The first part of our paper
(Sections 2 and 3) deals with studying the behavior of
this sequence.

In Section 4 we discuss the implementation of a pla-
nar robot path planner. The approach is base on the
new technique for computing Voronoi vertices which is
iterative in nature, based only on nearest point compu-
tations which do not assume an exact shape description
for the obstacles. Since we do not require exact shape
descriptions, the method seems therefore better suited
for real robotics applications than traditional Voronoi-
based approaches.

Due to the page number restriction, we cannot afford
to present proofs for many of our propositions. These
are provided in the complete version of the paper which
may be obtained by contacting the authors.

1.1 Preliminaries

Let R denote the set of reals, and R? the plane. We
include all points at infinity in R?2. The boundary of
a set S is denoted as 95 and its interior as int(S),
and its convex hull as CH(...). The distance between
two points! p and q is denoted as d(p,q). Extend the
notation to include distances between points and sets:
the distance between point p and the set S is defined as
d(p,S) = inf{d(p,s) | s € S}. It is clear that if p & S,
d(p, S) is achieved at a point s € 45.

For a set S;, the Voronoi region Vor(S;) for S; is
the set of points {p | Vj : d(p, S:) < d(p,S;)}. For a
pair of sets S, S;, their bisector b1s(S;, S;) is the locus
of points equidistant from both. Now let three disjoint
regular? sets Sy, Sz, .S be given in the plane. A Vorono:
vertez for Sy, S2, S3 is a point p such that the three dis-
tances d(p, S;) are all equal. While Voronoi regions and
bisectors always exist and are uniquely defined, the set
of Voronoi vertices for three sets could be empty. On
the other hand, more than one Voronoi vertex could
exist for three given sets. However, for three (possi-
bly non-intersecting) convex sets, at most two Voronoi
vertices can exist. Whenever our attention is focused
on one Voronoi vertex for three sets, we refer to it as

1Unless otherwise specified, we work in R? and therefore a
point (set of points) refers to an element (set of elements) in R2.
2 A set is regular if it coincides with the closure of its interior.
Formal definitions can be found in Kuratowski and Mostowski [9].

VO‘I‘(Sl y 52, 53).

We define two functions ¢ and v, and their composi-
tion p as follows. The function ¢ : R? — S; x Sy x 53
maps a point p € R? to the respective closest points
in the boundary of the three sets from p, i.e., ¢(p) =
(s1, 82, 3) where d(p, S;) is achieved at s; € 35;.

The function v : S; x S x S3 = R? maps a triplet
of points taken from the three sets to a point equidis-
tant from the triplet (which can be at infinity, if the
points are collinear). In other words, ¥(s1,s2,83) =
q such that d(q,s1) = d(q, s2) = d(q, s3).

Our first goal in this paper is to study the behavior
of the composition of v with ¢ which we denote by
p:R? o R2:

p=1yodg.

Specifically, we wish to investigate the relationship be-
tween Vor(Si,S2,S3) and p; = p'(po) for increasing i
while varying the initial point py over R?. So the ques-
tions we may ask are:

1. For a given S, 52,53 and po, does the sequence
{pi = p*(po)} converge to a Voronoi vertex?

Remark: Note that a Voronoi vertex could exist
at infinity. However, we still choose to use the
term “convergence” to the vertex rather than “di-
vergence” to maintain uniformity.

2. Determine necessary conditions on S, S2,S3 and
po under which convergence occurs.

3. Determine sufficient conditions under which the se-
quence oscillates.

We study these questions in Sections 2 and 3; the S;
are referred to as objects in these sections.

2 A Sufficient Condition for
Convergence

In this section we present a sufficient condition under
which the sequence {p;} converges to a Voronoi vertex.
Other conditions for oscillations and convergence are
presented in Section 3 along with some special cases.

Lemma 2.1 Let ijects S1,S52,53 and py be given,
and define p; = p*(po). If lim;. p; exists, then it
is a Voronoi vertex for Sy, S, Ss.

This lemma implies that the sequence {p;} does not
converge to a Voronoi vertex only if it is oscillating.?
The sequence {p;} cannot exhibit chaotic behavior since
our system has only two degrees of freedom [11] (Berge
et al. [3] give a gentle introduction to dynamical systems

3Figures 1 and 2 show that oscillation can occur even for ob-
jects in general position.
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Figure 1: A case of three objects leading to oscillations
in the sequence {p;}. The S; are the objects and U is a
region bounded by segments perpendicular to the edges of
the objects. For any pp € U, p; and py are as shown. It
is easy to verify that py; = p2 and pe;y1 = 1.

and chaos). Using this lemma we will now present con-
ditions under which the sequence converges to a Voronoi
vertex. For a circle or circular disk (a circle together
with its interior) C, let rad(C) denote its radius and
center(C) its center.

Lemma 2.2 Given a closed circular disc D C R? and
three non-collinear points p,q,r € D, let C be the
unique circle through p,q,r. If center(C) € CH(p,q,r)
then rad(C) < rad(D), and equality implies C = dD.

In the following corollary we give a lower bound on the
ratio rad(C)/rad(D).

Corollary 2.1 (to Lemma 2.2) Let r,7’ be the radii
of C and D, respectively. Then,

Theorem 2.1 If Vi € N, piy1 € CH(¢(p:)), then
the sequence {pi} converges to a Voronoi vertex of
51752, S3'

Proof. Let the disk circumscribing the elements of ¢(p;)
be denoted by D; of radius R; and centered at p;4;.
The hypothesis along with Lemma 2.2 imply that R; is
a non-increasing sequence, R;;; < R; and if R;4; = R;,
D; = D;4+; (the corollary to Lemma 2.2 gives an upper
bound on R,y;/R; in terms of R;). This implies that
the sequence {D;} converges to a disk D*. Therefore
the sequence of corresponding centers {p;} converges to
a point p*. Lemma 2.1 implies p* = Vor(S1, S2, S3).

Figure 2: Another example in which oscillation occurs.
A, B, C are the three line-segment objects. For any pg €
U, p1,...,ps result and thereafter po, ..., ps repeat.

The above proof is quite general; it only relies on the
definition of a Euclidean distance metric. Notice that
this proof also holds for non-regular or non-compact
sets S1, Sz, 53. It is also extendible to objects in higher
dimensions (with appropriate modifications to the num-
ber of objects forming a Voronoi vertex etc.).

We conclude this section with examples of oscillations
in {p;}; see Figures 1 and 2. The difference between
the two examples is that the initial closest points on
objects are visible from each other in second example
but a;,c; are not visible from each other in the first.
This rules out any prediction of convergence/oscillation
in bases of visibility between the initial closest points
alone. However, notice that in the second example the
closest points on the obstacles from p;,...,ps are not
visible from each other. This suggests there still might
be a link between visibility and convergence. This is
the topic of Section 3.

3 Visibility and Convergence

In this section we present some results relating the con-
cept of visibility (as used in computational geometry)
between objects to the question of convergence of the
sequence {p;}. This is motivated by the oscillation ex-
ample shown in Figure 1. Notice that one of the objects
“hides” a portion of the second object from a portion of
the third. We assume closed convex sets for the objects
in this section.

An object S is said to hide S2 from S;3 (and S3 from
S2) if the set CH(S2 U S3) \ int(S;) is disconnected.
On the other extreme, in a scene consisting of objects
(81,82, S3), objects Sz, 53 are said to be visible from
each other if CH(S, U S3)NS; = 0. Three objects are
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visible from each other if they are pairwise visible.

Theorem 3.1 The following implications hold: C1 &
C2 = C3, where:

C1 5,,85,,853 have no Voronoi vertex.
C2 One of Sy, S5, S hides the second from the third.

C3 The iterative procedure on objects S, Ss, S3 pro-
duces a sequence {p;} that oscillates for any initial

point pg.

This theorem gives an easy criterion from which to
conclude that the sequence oscillates. The following
theorem gives a similar criterion for convergence of the
sequence. These criteria depend only on scene geom-
etry and therefore may be easily verified in advance
(unlike the condition in Lemma 2.2 which depends on
the progress of the iterative procedure).

Theorem 3.2 If convex objects S1,S,,S3 are visible
from each other, then the sequence {p;} converges to a
Voronoi vertex from any initial point p, € R2.

Proof. The proof is by contradiction; we assume that
S1, 52,53 are completely visible from each other yet
the sequence {p;} starting from point py oscillates with
some period k. For ¢ > 0, denote the triple of nearest
points from p; on Sy, S2, 53 as T; = {s1,4, $2,i, $3,:}, and
the circle through 7; with center p;y; as C;; see Fig-
ure 3. The points of T; lie inside C; because they are
nearer to center(C;—;) than the corresponding points in
Ti-1, and by definition they lieon C;. For1 < j < 3, let
ej,i denote the line segment joining s;,; with s ;4 1mod &-
Since the obstacles are convex, the line segments e; ; are
fully contained in S;.

For k = 2, the line ! through the intersection points
of Cy with C) separates Ty from 7;; therefore [ inter-
sects all three obstacles. This implies that they are not
completely visible.

In the general case, a case analysis shows that for any
k > 2 there exists a similar line ! that intersects e; ; for
1 € 7 € 3, and therefore all three obstacles. Details
have been omitted and can be obtained from the full
paper.

Although the sequence {p;} is not always guaranteed
to converge, we can show that there always exists a
“region of convergence”, a maximal region such that
the sequence is guaranteed to converge to a Voronoi
vertex from any initial point in that region. Clearly, this
region includes the target Voronoi vertex. Furthermore,
these regions are of non-zero two-dimensional measure.
This essentially follows from Theorem 3.2: there is a
neighborhood of boundary points on each obstacle that
includes the closest point from the Voronoi vertex, and
is completely visible from the other two neighborhoods.

Figure 3: lllustration to the proof of Theorem 3.2, which
establishes that the sequence {p;} converges to a Voronoi
vertex if the obstacles are completely visible from each
other. T; denotes the triple of nearest points from p; on
the obstacles; C; is the circle through these points. By
definition, the next approximation for the Voronoi vertex
Di+1 is the center of C;. For oscillation with period 2, the
line [ intersecting all three obstacles is shown.

These neighborhoods define a subset of the plane that
is of non-zero measure, includes the Voronoi vertex, and
is a subset of the region of convergence. We provide a
formal proof in the full paper.

This observation allows us to deal with oscillations
in the sequence {p;} in the following way. Pick any
initial point py € R? and construct the corresponding
sequence {p;}. If this sequence converges, it does so to
a Voronoi vertex by Lemma 2.1. Otherwise, we pick a
different po and construct the sequence from this point.
Because the region of convergence for every Voronoi
vertex is of non-zero measure, we will eventually hit a
po in the region of convergence. Notice that this leads
to a completeness result for our technique.

4 Application to Path Planning

In this section we use the vertex-finding technique de-
scribed in the previous sections to plan a path for a
planar robot with two degrees of freedom that avoids a
set of n static planar obstacles in its workspace. Our
method is based only on nearest point computations
performed in the workspace.

Going from three obstacles to a scene with several ob-
stacles raises the following key issue. Not every triple
of obstacles defines a Voronoi vertex. For example, for
convex obstacles in the plane, there exists only a lin-
ear number of Voronoi vertices for the cubic number
of triples [13]. Therefore, we first need to device a se-
lection strategy that decides which triples of obstacles
define a vertex.

We desire a strategy that can efficiently suggest can-
didate Voronoi triples. Borrowing from Overmars [14],
we simply pick a point p uniformly at random over the



configuration space. Next, the nearest three obstacles
to p (denoted as triple(p)) are determined by closest-
point queries; these are considered a candidate Voronoi
triple. We construct the sequence {p;} taking py = p,
thus computing a Voronoi vertex for triple(p). The ap-
proximation of the vertex for triple 7 and with seed
Po = p can be terminated when p; and p;,; are “suffi-
ciently close”, i.e., are at most some chosen parameter €
apart. It has been observed in practice that the conver-
gence is very fast, rarely exceeding five iterations. This
observation can be used to detect oscillations of the se-
quence {p;}. If it does not converge for a relatively large
number of iterations, we assume that oscillation occurs.
Even if this is not true this does not affect the validity
of our method, because the same triple will eventually
be candidate for a different seed point. If the sequence
starting from an initial point p converges to a Voronoi
vertex v for triple(p), we check whether this triple actu-
ally defines a vertex by determining the three obstacles
nearest to v. If the triples of p and v are identical, we
have found a Voronoi vertex for triple(p). Otherwise,
we consider triple(v) a candidate triple and construct
the corresponding sequence from py = v.

To perform path planning, we build up a connectiv-
ity structure (graph) G around the Voronoi vertices. A
path between given start and goal configurations may
be searched in G using familiar methods. The graph
is computed by incremental construction: for every
Voronoi vertex v found for a triple 7, the portion of
the Voronoi diagram local to v and T is computed as
follows. Consider the portion of the Voronoi diagram
given by V4 g = bis(4,B) N V. A wvia point defined
by the obstacle pair A4,B is a point p € V4,p such
that Vg € V4,5 : d(p, A) < d(g,A). We can uniquely
associate three via points to every Voronoi vertex as
follows. Suppose that v is defined by the obstacle triple
T = {A, B,C}; notice that v is an endpoint of V4 g by
definition. Now follow V4 g while walking away from
v until a via point is encountered. This uniquely asso-
ciates a via point to V4, p. Analogously we can associate
via points to V4,c and Vp c.

The usefulness of the concept of via point lies in their
use for delimiting the portion of the Voronoi diagram
which is influenced by a given vertex. This makes it pos-
sible to incrementally assemble the complete diagram
by appropriately joining suitable sub-diagrams. To de-
termine the via points associated to a given Voronoi
vertex v, let da(g) be defined as the vector from q to
the point s € 4 which achieves minimum distance from
g; obviously, |d4(q)| = d(g, A). The vector dg(q) is de-
fined analogously. Now consider the sequence {g;} for
1=1,2,..., defined by:

da(gi—1) + dp(gi-1)
5 (1)

Note the resemblance to the sequence {p;} defined in

9 =gi-1+
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Figure 4: A set of obstacles (shown in dark grey) together
with the graph representing the vertices and via points of
the Voronoi diagram in the corresponding configuration
space. The resulting data structure is very compact and
comprises only 105 vertices and 168 via points. A collision-
free path for the robot is shown in light grey.

the previous section, but defined for two objects instead
of three.

Theorem 4.1 For gy = v, the sequence given by Equa-
tion (1) converges to the via point p.

The complete diagram can be incrementally obtained
by appropriately joining the sub-diagrams correspond-
ing to the portions relative to different vertices. Sup-
pose that part of the Voronoi diagram V' has been com-
puted, and that the portion V, relative to a new vertex
v must be added. To correctly join V, to V it is suffi-
cient to keep track of the via points found so far and
of their defining obstacle pairs. Let p € V4,p be a via
point associated to v; the component V, is joined to the
Voronoi diagram by adding the edge from v to p to V
(some care has to be taken if the object boundaries are
parallel). The same is done for the two remaining via
points associated to v.

4.1 Implementation

A motion planner for planar robots based on the
method described in this paper has been implemented
in C++ on a Silicon Graphics Indigo workstation. The
program implements the computation of Voronoi ver-
tices, the incremental construction of a representation
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of the Voronoi diagram, and the search for a collision-
free path on the diagram. Testing has been based on a
set of several representative scenes, each of which have
their own peculiarities. One such scene, along with the
diagram constructed by the program and a collision-
free path for the robot is shown in Figure 4. In the
full paper we include more detailed experimental re-
sults and compare the performance of our algorithm to
other methods.

5 Discussion and Future Work

In this paper we have presented a simple iterative tech-
nique, based on nearest-point-on-objects queries, that
converges to the Voronoi vertex for three objects or os-
cillates. In case of oscillations (which can be detected)
and if the three objects do define a Voronoi vertex,
a different choice of the initial point for the iteration
is necessary for convergence. We present some condi-
tions under which convergence is guaranteed and also
conditions under which oscillations are guaranteed (the
three objects do not define a vertex). However, we do
not have any simultaneously necessary and sufficient
conditions for convergence. We believe this to be an
interesting open problem.

The presented conditions for convergence and oscil-
lation are opposing: the condition for convergence be-
ing that of complete visibility while that for oscilla-
tion being one object completely hides the second from
the third. We are unable to prove anything definite
about intermediate cases: when there is partial visibil-
ity among the obstacles. We believe the answer will
involve regions of convergence. For complete visibility,
the region of convergence is the entire plane. In case of
complete hiding, there is no Voronoi vertex (and there-
fore no region of convergence). For partial visibility,
regions of convergence will constitute proper subsets of
the plane. An interesting problem is to explicitly com-
pute these regions of convergence for Voronoi vertices.

We also briefly presented an implemented motion
planner for robots in a two-dimensional work space,
but easily extendible to higher dimension configuration
spaces. Since we only work with nearest point compu-
tations and do not need exact shape representations,
perhaps our technique can be extended to changing or
dynamic environments as well.
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