51

Motion Planning for Vacuum Cleaner Robots*
(Extended Abstract)

Chantal Wentink'

Abstract

A ‘“vacuum cleaner robot” is a polyhedral robot in
a three-dimensional, polyhedral environment that can
translate in a horizontal plane and rotate around a ver-
tical axis. Generalizing a previous result for the planar
motion planning problem, it is shown that the motion
planning problem for a k-faced vacuum cleaner robot in
an environment of total complexity n can be solved in
time O(k3n®log kn).

1 Introduction

The planar motion planning problem considers a polyg-
onal robot that is free to translate and rotate in a pla-
nar polygonal environment. This is usually considered
a good model for realistic robots, even in our three-
dimensional universe, since typical autonomous robots
are restricted to move on a planar surface, and many
environments—a factory floor, for instance—can be de-
scribed well using a planar floor map.

Nevertheless, there are situations where this model is
too crude. Imagine a robot vacuum cleaner that moves
autonomously in an office. It may easily pass under-
neath a chair that is standing in the office, but it will
not be able to pass it if the same chair has been tossed
over. Or imagine a robot carrying a bulk object that
sticks out beyond the robot. The robot may be able to
carry its load over little obstacles lying in its way, even
if it cannot pass these obstacles with its own body. In
these situations the fact that robot and obstacles are liv-
ing in a three-dimensional world cannot be ignored, even
if the robot is restricted to stay on a two-dimensional
surface of that world.

In this paper we will consider this situation, the case
of a vacuum cleaner robot. In particular, we will show
how an algorithm for planar motion planning by Av-
naim et al. [1, 2] can be generalized to do motion plan-

*This research was supported by the Netherlands’ Organi-
zation for Scientific Research (NWO) and partially by the ES-
PRIT II Basic Research Action 6546 (PROMotion).

tVakgroep Informatica, Universiteit Utrecht, Postbus 80.089,
3508 TB Utrecht, the Netherlands. E-mail:
{chantal,otfried }@cs.ruu.nl

Otfried Schwarzkopf!

ning for a vacuum cleaner robot.

The planar motion planning problem can be defined
as follows: given a robot B, a simple polygon with &
edges, a polygonal environment E consisting of n line
segments, and a start and goal placement for the robot
within this environment, find a continuous motion con-
necting the start and goal position during which the
interior of B does not intersect any element of E. This
problem had only been studied from a practical point of
view when Schwartz and Sharir [6] gave the first exact
solution, using a very general, but rather involved algo-
rithm. For the case that B is a line segment (a “ladder”)
the algorithm takes time O(n%). For convezr robots B
Kedem and Sharir [3] gave an algorithm of running time
about O(n?k?). Finally, for the case of a general robot
B, Avnaim and Boissonnat [1] gave an O(n3k3 log(kn))
algorithm to compute the space of all legal configura-
tions of the robot, and Avnaim et al. [2] showed how to
compute a motion for the robot in time O(n3k®) once
this configuration space is known. (More results on ex-

~ act and approximate motion planning algorithms can

be found in Latombe’s book [4].)

This is the algorithm we will generalize in the present
paper. We start with a robot B, a k-faced polyhe-
dron moving in a three-dimensional space cluttered with
polyhedral obstacles with total complexity n. The robot
has three degrees of freedom: It can translate in a fixed
plane—for convenience, we will assume that this is the
zy-plane—and it can rotate around the z-axis. We
will show that the configuration space of this robot—
the space of all placements where it does not intersect
any obstacle—has complexity O(n®k3), just like in the
planar situation, and that it can be computed within
O(k3n3 log(kn)), using a generalization of Avnaim and
Boissonnat’s algorithm. Once the configuration space
has been computed, the technique by Avnaim et al. can
once again be used to compute a path connecting two
given placements in time O(k3n3).

While the planar motion planning problem becomes
easier by one order of magnitude when the robot B is
convex, this seems not to be true for the case of the
vacuum cleaner robot. We give an example of a convex
robot B with k¥ = 4 and n point obstacles that induce a
free configuration space of complexity ©(n®). Together

52

with a two-dimensional lower bound, we thus have a
lower bound of Q(n3 + n%k?) and an upper bound of
O(n3k®) on the complexity of the free space. We leave
it as an open problem to tighten or close this gap.

2 Definitions and problem setting

Let B be a rigid k-faced polyhedron (the robot), mov-
ing in a three-dimensional space, amidst a number of
non-moving polyhedra (the obstacles), A, Aa, ..., Ap,
having n faces altogether. (We assume that all polyhe-
dra are already triangulated, so the total complexity of
the obstacles is O(n).)

The robot’s movements are confined to translations
in the z- and y-directions and rotations around an axis
parallel to the z-axis. This means, for instance, that a
suitable reference point b for B remains in the zy-plane.
We will call this type of robot a vacuum cleaner robot.
As in the planar case, we can describe any placement of
the robot using three parameters (z, y, §)—the first two
specify the position (z,y) of the reference point in the
zy-plane, while @ specifies the orientation with respect
to some standard orientation. The free configuration
space FP is the set of all placements (z,y,0) such that
the interior of B does not intersect any of the obsta-
cles. (Note that our definition allows motions where
the boundary of the robot touches the obstacles.)

In this paper we will describe how to compute F'P in
time O(n%k®log kn). Once FP is given, the algorithm
by Avnaim et al. [2] can be used to actually compute a
motion of the robot in time O(n3k3). _

The boundary of the free configuration space F'P con-
sists of placements where the robot is in contact with
an obstacle. We distinguish three different types of con-
tacts: face-vertex contacts (f,v) between a face f of the
robot and a vertex v of an obstacle; vertex-face contacts
(v, f) between a vertex v of the robot and a face of an ob-
stacle; and edge-edge contacts (eg,e4) between a robot
edge ep and an obstacle edge e4.

A contact placement associated with a certain con-
tact C is a placement (z,y,0) that satisfies one of the
following conditions. (Here, T(z,y) denotes a transla-
tion by vector (z,y), and Ry denotes a rotation around
the z-axis with angle 6.)

e v € T(z,y)o Ry(f) when C = (f,v) is a face-vertex
contact;

e T(z,y)oRy(v) € f when C = (v, f) is a vertex-face
contact;

e T(z,y)o Ro(ep)Nes # 0@ when C = (eq,ep) is an
edge-edge contact.

A contact placement is said to be free if in addition it
satisfies

T(z,y) o Re(int B) N | J A; = 0 (1)

This means that no other part of the robot intersects
with an obstacle feature at this contact placement. A
contact region associated with a contact C is the clo-
sure of the set of all free contact placements associated
with C. It is denoted by R(C). These contact regions
clearly contain the boundary of the free space F'P. How-
ever, there are some contacts whose contact region is
not on the boundary of FP, but lie in the interior of
the free space. These are the face-vertex and vertex-
face contacts where the face is horizontal, as well as the
edge-edge contacts where both edges are horizontal. Al-
though there may be free contact placements realizing
such a contact, these placements are not necessarily on
the boundary of F'P, since there is no movement of the
robot which turns the touch into a penetration, see Fig-
ure 1: a slight move of the robot {which could be both
of the shown parts) does not result in an intersection
between the robot and the obstacle. In the following,
we will simply ignore all such contacts: a contact is a
contact only if not both features are horizontal. Under
that condition, we immediately have

Proposition 1 dFP = |J, R(C)

Accordingly, we can concentrate on the computation of
R(C) for all possible contacts. Later we will have to take
the union over all these regions to compute a boundary
representation of FP.

[

Figure 1: A contact placement not on the boundary of
FP. :

3 The algorithm

The algorithm presented here is a generalisation of the
2-dimensional algorithm as described by Avnaim et al.
(1, 2]. First we give an exact description of the non-free
placements of the robot and a description of the edges
describing the contact placements. Then we intersect
the edges describing the contact placements with the
polygons describing an intersection between two faces to

obtain the contact regions. Finally the adjacency rela-
tionships between the resulting contact regions are pro-
duced. The result immediately gives us a description of
the free configuration space, according to Proposition 1.

3.1 Non-free placements

First we want to give a description of the non-free con-
figurations. These are exactly the configurations im-
plying a face-face intersection. We make the following
observation.

Observation 2 There is an intersection between two
polygons Py and P, in space if and only if either an edge
of P, is intersected by P> or an edge of P, is intersected
by P]_ .

When we want to describe the intersection configu-
rations of an edge with a (triangular) face, the part of
the face which needs to be considered is obtained by
intersecting it with the planes z = z4 and z = zp with
za and zp the z-coordinates of the vertices describing
the edge involved. For simplicity, we divide the result-
ing polygon into triangles, having one horizontal edge
each. Thus the problem is reduced to describing the
intersection between an edge and a triangle having one
horizontal edge.

Observation 3 The configurations implying an edge-
face intersection between an edge e and a face f are
bounded by the configurations implying an intersection
between e and the edges describing f.

obstacle

Figure 2: Projection of an obstacle face.

This means that we can describe the non-free place-
ments by giving a description of three edge-edge inter-
sections. The three segments describing the configura-
tions resulting in edge-edge contacts form a triangle in
the plane, which is the projection of the face involved
in the direction of the line containing the edge of the
robot e. This is illustrated in Figure 2. We construct
such a triangle t;; for all combinations of edges j and
faces k of the robot and the obstacles.

53

3.2 Edge-edge intersection

Assume we have an edge AB of the robot and an edge
EE’ of an obstacle. We want a description of the contact
placements. [is the line through AB.

S
/

S
/ |O P
Ll

Figure 3: An edge edge intersection.

Figure 4: Top view on edge AB.

See Figure 3 and Figure 4 for a sketch of the situation
and variable names. It is clear that the coordinates of
A and B depend on the robots orientation 8, while E
and E’ do not. When 6,4 is A’s initial orientation and
fp is B’s initial orientation, the coordinates of A and B
are given by

A= (acos(0@+84),asin(f +04),z4) (2)

B = (bcos(8 + 05), bsin(d + 65), =5) (3)

What we need is the projection of obstacle edge EE’
onto the zy-plane in the direction of {. This is done by
computing the intersection points of the lines parallel
to ! through E and E’. The resulting points are the
endpoints of the segment, which describes all transla-
tions of L, the intersection point of [with the xy-plane,
resulting in a contact between AB and EE’. This seg-

ment is then translated by the vector L_oﬁ, because we
want a description of the configurations of the reference
point, which was originally in O. It can be shown that
the intersection points are:

54

P = (zg+)\ (bcos(6 +8p) —acos(d +04)),ye+ A
(bsin(f + 6p) — asin(f +60,4))) and
P' = (zg+ 1 (bcos(0 +6p) —acos(d +04)),ye + K
(bsin(8 +) — asin(f + 04))).
Note that a, bv TE,YE,ZE,ZE',YE', ZE', oAv 63’ ZA,2B, X
and j are constants and do not dependent on #. The
equation of the line PP’ can now be written as

cs(0)X — cs(0)Y + cs(f)cs() =0, 4)

where the cs(f) are expressions of type acos(f) +
Bsin(f) + v (and different occurrences of cs(f) denote
different such expressions).

Translation of PP’ in the zy-plane over the vec-

tor m does not change the structure of the equa-
tion. When ST and TU are the projections of the
non-horizontal edges as in Figure 2, we can make the
following claim.

Proposition 4 The equations of lines ST and TU are
given by cs(6)X — cs(0)Y + cs(8)cs(8) = 0.

Because US describes contact placements involving
a horizontal obstacle edge, the equation of this line is
different from ST and TU. The point on AB touching
the horizontal edge EE' is always the same, because
there is only one point on AB at the same height as
EF'.

Proposition 5 The equation of line US is given by
aX -Y +cs(8) =0.

3.3 Contact placements

In order to compute the contact regions, we have to
describe the contact placements associated with the di-
verse contacts C. The possible contacts in three di-
mensions are vertex-face, face-vertex and edge-edge con-
tacts. As we saw before all contact placements asso-
ciated with an edge-edge contact are on the segment
PP = T(m) op, (EE') with p;,(EE') the projection
of EE' onto the zy-plane in the direction of I. The
line through P and P’ is described by the equation in
Proposition 4.

The segment, describing all contact placements asso-
ciated with a vertex-face contact (v, f) is obtained by
first intersecting f with the plane z = z,. Then the
contacts between the resulting horizontal edge and v
can be described in a similar way as the edge-edge con-
tact placements, involving one horizontal edge. This
leads us to an equation like the one in Proposition 3,
for PP’ = T(0s0)(EE").

A face-vertex contact (f,v) can be treated in a sim-
ilar way as a vertex-face contact. The only thing that
should be done in addition is symmetry in O: PP’ =

(T(Vg_O))(EE'))*. The equation for PP’ is an expression
like the one in Proposition 5.

We refer to the segments as described above as PP’
One such segment is associated with each possible con-
tact C. Having an exact description of the contact
placements and the non-free placements of the robot,
we are able to compute the contact regions, associated
with the different contacts.

3.4 Computation of the contact regions

As shown before we need all the contact regions, one
per contact, to compute the boundary of the free space
(see Proposition 1). A contact region can be computed
as follows:

R(C) = PP'(O\[t;«(6) (5)
jk

for all triangles t;; as computed in section 3.1, j and &
identifying the edge and face involved in contact C.

PP'(9) is the segment describing all contact place-
ments associated with contact C. Triangle t;c(6), de-
scribing non-free placements, intersects PP'(6) in points
that depend on 8. We call the intersection points L ;i (6)
and M;i(8). This is illustrated in Figure 5.

P!
M;(6)

—
I
[tik

Lix(6) ! ,

|
|

Figure 5: PP’ intersecting a non free section.

The set theoretic difference between a segment and
a family of triangles is a family of segments S ...S;.
Each endpoint of S; is either a point L;i(#) or a point
M;(8) for some j,k. In order to compute the free seg-
ments of PP’(f), we associate two functions to each
triangle t;c. A function A(#) which defines the intersec-
tion point closest to P and p(6) defining the intersection
point closest to P, where the segment PP’ is scaled to
size 1, so when for example A\(8) = 0.5, the intersection
point of t;; with PP’ closest to P is in the middle of
the segment.

So, A and u range from O to 1. These two functions
enable us to get a two-dimensional representation of a
contact region. Using Propositions 4 and 5 it can be
shown that

Proposition 6 Let A\() and p(0) be the functions as-
sociated to triangle t(0) and edge PP'.

1. \(0) and u(6) are defined on the same finite set of
sub-intervals of [0, 2m)

2. On each of these sub-intervals, A(0) (resp.u(@)) is
an ezrpression of the following type

cs(0)cs(8)es(9)
cs(@)cs(8)cs(8)

3. M) and p(8) can be computed in constant time.

For each triangle t;z(f) and contact C we can com-
pute the associated functions A;x(8) and p;x(@). These
functions are defined on [0, 27), the range of the func-
tions is [0, 1]. For every possible contact C we can draw
these functions in a two-dimensional figure. Each point
(8, ¢€) in this planar graph represents a three-dimensional
configuration of the robot involving contact C. We have
obtained this two-dimensional representation by consid-
ering only one contact C at a time. Let p;i be the region
between two corresponding Ajx(6) and u;x(6). pjr cor-
responds to the non-free placements at which contact C
is made, but where two faces intersect at the same time.

We define the ®-region associated to contact C as

3(C) = ([0,27) x [0,1]) \Upjk~

Jrk

Each element (f,¢) € ®(C) represents a free place-
ment of R(C). Now we have to transform this two-
dimensional representation of the free contact place-
ments associated with C into a description in the
three-dimensional configuration space. To each element

(8,€) € ®(C) corresponds a free placement (W ,0) on

—_—
R(C), such that b_lq e (Tﬁ + ePP’'. This defines the
one-to-one relation:

F: (9? 6) - (25, Ys, 0) (6)

with zg = ZE=%E — zp, ys can be calculated by sub-
stitution of the values of zg and @ in the equation of
line PP’, because (zs,ys) is a translation to PP’ at
orientation 6.

In order to compute R(C), we will compute ®(C)
and then apply F. For this purpose we can use a plane
sweep algorithm, which is similar to the one described
by Ottman [5]. With this algorithm we can compute a
subdivision of ® into ¢;’s, where ¢; is bounded by two
curves Ajx(0) and pjx(0) (keeping a constant analytic
form) and possibly one line segment on § = a; and
one on # = a;y;. Where [ag,y,...,q] is the set of
orientations either corresponding to an end point of a
subinterval where A;x(6) and p;x(8) keep a constant
analytic form or to the orientation of an intersection
point between two such functions.

55

Only, instead of working with straight line segments,
we must consider pieces of curves described by the equa-
tions in Proposition 6. Because A(f) and u(8) corre-
spond to double-contacts (one of them being C) an-in-
tersection between two such curves implies a triple con-
tact. These intersection points are the event points in
the sweep line algorithm. In the full paper [7] it is shown
that

Proposition 7 &(C) consists of a finite (possibly
empty) set of regions which can be computed in time
O((kn + t)log kn) where t is the number of triple con-
tacts involving contact C.

Contact region R(C) is now computed by taking the
union of the images F(¢;) of all subregions. F(¢;) is a
ruled surface, which can be computed in constant time
from ¢;. We call it a face of R(C).

Proposition 8 R(C) consists of a finite (possibly
empty) set of faces, which can be computed in time
O((kn + t)logkn), with t the number of triple contacts
involving contact C.

3.5 Computation of the free space

In order to compute a complete description of the
boundary of FP (8FP), we compute the set of all its
faces by computing R(C) for all the kn contacts C. As
stated in Proposition 8 computing one contact region
R(C) takes O((kn +t)log kn) time, where t is the num-
ber of triple contacts involving C. Thus computing all
the faces of OF P takes (O(k?n2+T)log kn) time, where
T is the total number of triple contacts. An example can
be given where T = Q(k*n3) [1]. In addition, we com-
pute the adjacency relationships between the faces of
OFP. These can be computed during the plane sweep
algorithm as described in the previous subsection. Thus,
we obtain the final result:

Proposition 9 9FP can be
computed in time O((k*n? + T)logkn) where T is the
total number of (not necessarily free) triple contacts. In
the worst case T = ©(k3n3).

Finally the algorithm described by Avnaim et al. [2]
is used to find a free motion in FP. The time needed
to find such a motion is O(k®n®) in the worst case.

4 Convex obstacles

In most motion planning problems there are some spe-
cial cases, which can be solved in less time than the
general problem. One example of such a special case
is the case of convex obstacles and a convex robot. In

56

the planar case, for example, Kedem and Sharir [3] pre-
sented a motion planning algorithm for a convex robot,
running in O(kn)g(kn)logkn) time, where A (g) is an
almost linear function of ¢, the maximum complexity
of a (g, s)-Davenport-Schinzel sequence. This is signifi-
cantly better than the running time of the algorithm by
Avnaim and Boissonnat for a general robot. For the vac-
uum cleaner robot, however, such an improvement does
not seem likely. In particular, the complexity of the free
configuration space of the robot does not decrease as in
the planar case. In the following we give an example
of a vacuum cleaner robot where the free configuration
space has complexity Q(n®). Even in the planar case,
the complexity can be Q(k?n?), so this gives us a lower
bound of Q(k?n? + n3) for the complexity of FP for a
convex robot. We do not know if the complexity could
be Q((kn)3) as in the general case.

As we saw before, the complexity of the free space is
determined by the number of triple contacts between the
obstacles and the robot. In Figure 6 we give an example
where the number of triple contacts is Q(n®). Here is

O(n)obstacles

[}
]
]
]

o O(n)obstacles
Figure 6: Q(n3) lower bound on triple contacts.

a description of the robot. We have a robot which has
one horizontal edge A in the plane z = 0 and another
horizontal edge B in the plane z = 1. The robot itself
is a tetrahedron, the convex hull of these two segments.

There are two rows of n/3 obstacles parallel to the
z-axis in the plane z = 0 and one row of n/3 obstacles
parallel to the y-axis in the plane z = 1.

Edge A of the robot can now touch every combination
of two obstacles, one from each row in the z = 0 plane
simultaneously, by changing its orientation. This way,
there are O(n?) possible double contacts. If the edge
A and B are long enough, at every one of these double
contacts, all of the O(n) obstacles in the z = 1 plane
can be touched by edge B. These contacts can be made
by translation of the robot in the direction of the line
through A at a particular orientation, associated with a
double contact.

In the mean time no other part of the robot hits or
intersects an obstacle, because no part of it, except A
and B, is in one of the planes z = 0 or z = 1, the planes

where the obstacles are.

So, with every Q(n?) double contact in z = 0, (n)
contacts in z = 1 are possible. This adds up to Q(n?)
triple contacts in total.

References

(1] F. Avnaim and J.-D. Boissonnat. Polygon placement
under translation and rotation. In Proc. 5th Sym-
pos. Theoret. Aspects Comput. Sci., volume 294 of
Lecture Notes in Computer Science, pages 322-333.
Springer-Verlag, 1988.

[2] F. Avnaim, J.-D. Boissonnat, and B. Faverjon. A
practical exact motion planning algorithm for polyg-
onal objects amidst polygonal obstacles. In Proc. 5th
IEEE Internat. Conf. Robot. Autom., pages 1656—
1661, 1988.

[3] K. Kedem and M. Sharir. An efficient motion plan-
ning algorithm for a convex rigid polygonal object
in 2-dimensional polygonal space. Discrete Comput.
Geom., 5:43-75, 1990.

[4] J.-C. Latombe. Robot Motion Planning. Kluwer
Academic Publishers, Boston, 1991.

[5] T. Ottmann, P. Widmayer, and D. Wood. A fast
algorithm for Boolean mask operations. Comput.
Vision Graph. Image Process., 30:249-268, 1985.

(6] J. T. Schwartz and M. Sharir. On the “piano
movers” problem I: the case of a two-dimensional
rigid polygonal body moving amidst polygonal bar-
riers. Commun. Pure Appl. Math., 36:345-398, 1983.

[7] C. J. Wentink. Motion planning for vacuum clean-
ers and related problems. Master’s thesis, Utrecht
University, August 1993.

