57

Widest Empty Corridor with Multiple Links and Right-angle Turns
(Extended Abstract)

Siu-Wing Cheng?
Department of Computer Science
The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
scheng@cs.ust.hk

Abstract. We formulate the problem of computing the
widest emply corridor with at most £ links and right-
angle turas for a set of n points. It is a generalization of
the widest empty corridor problem studied in [2, 3] and
it relates to the problem of computing corridors of other
shapes posed in [1, 3] (e.g., L-shaped corridor). When
£ = 2, it becomes the widest empty L-shaped corridor
problem for which we develop an O(n3)-time algorithm.
For general £, we present a dynamic programming al-
gorithm and prove a bound of O(¢n®) on its running
time. We also develop a faster approximation algorithm
that computes in O((1/€)¢n®log® n) time a solution with
width at least (1 — ¢) times the optimal for any € > 0.

1 Introduction

A corridor through a point set S is the open region of the
plane that is bounded by two parallel straight lines inter-
secting the convex hull of S. A corridor is empty if and
only if it does not contain any point of S [1, 2, 3). The
problem of computing the widest empty corridor through
a set of n points have been studied before and it can be
done in O(n?) time [2, 3]. The motivation is to find a
collision-free straight route to transport objects through
a set of point obstacles. However, even the widest empty
corridor may not be wide enough sometimes. This mo-
tivates us to consider allowing turns (restricted to right-
angle turns in this paper) and generalizing to corridors
with multiple links. This relates to the problem of com-
puting corridors of other shapes (e.g., L-shaped corridor)
posed in [1, 3].

We call an open polygonal region a regular corridor
with £ links if it is the concatenation of £ links (to be
defined below) such that neighbouring links are perpen-
dicular to each other. The links of a regular corridor
may have different widths and the minimum is taken as
the width of the corridor. To avoid some trivial solution
to our problem, we also require the corridor to satisfy
two criteria which will be elaborated in Section 2.

1Research supported by the RGC Grant HKUST 190/93.

We define a link to be an open polygonal region which
is bounded by : (1) two parallel lines (type 1 link), or
(2) two parallel line segments and two other line seg-
ments forming a trapezoid (type 2 link), or (3) two par-
allel rays and one line segment forming an unbounded
trapezoid (type 3 link). See Figure 1 for examples. The
width of a link is the perpendicular distance between its
bounding parallel lines or line segments or rays. Note
that although we require neighbouring links to be per-
pendicular to each other, a link need not be parallel to
either of the two axes (i.e., not necessarily orthogonal).

The largest width achievable is a monotonic function
in the maximum number of turns allowed. Thus, we are
interested in computing the widest empty regular cor-
ridor when an upper bound on the number of links is
specified. This problem may find application in trans-
porting objects under the circumstance that straight-line
movement is fast whereas it is relatively slow to change
direction. It is then desirable to select the empty regular
corridor with the fewest number of links among the wide
enough ones.

In Section 3, we present an O(n3)-time algorithm to
compute the widest empty L-shaped corridor. It is based
on the observation that it suffices to consider empty L-
shaped corridor that can be completely specified by three
points and a rotational deformation that can be com-
puted in O(1) amortized time. In Section 4.1, we present
an O(£n®)-time algorithm to compute the widest empty
regular corridor with at most £ links. In Section 4.2, we
show that the running time can be reduced significantly

7N

(®) (c)

Figure 1. (a) One type-1 link; (b) Two type-3 links; (c) Two
type-3 links and three type-2 links

58

EEI_

Figure 2.

(b)

to O(¢n?log® n) if the corridor is restricted to be orthog-
onal. We then show how to apply this special-case algo-
rithm obtain an O((1/€)én®log® n)-time approximation
algorithm to compute an empty regular corridor with at
most £ links and width at least (1 — €) times the optimal
for any € > 0.

2 Preliminaries

A regular corridor is allowed to be self-intersecting be-
cause there are circumstances in which the widest empty
regular corridor will have to be non-simple. See Fig-
ure 2(a): The shaded regions are dense with points and
the empty corridor on the right is the widest possible.
To make sure that the concatenation of links is well de-
fined, we require that if we traverse the two bounding
polygonal lines of the corridor simultaneously, then the
bounding parallel line segments/rays of each link must
be traversed in the same direction. We also require the
corridor to satisfy the following two conditions.

Condition C1. Each unbounded exterior region in-
duced must contain some point of S.

Condition C2. P induces two unbounded exterior
regions.

The motivation for the conditions is as follows. Un-
like the empty 1-link corridor, we cannot simply require
the corridor to intersect the convex hull of S because that
will allow it to “scratch the exterior” of S without ac-
tually passing through S. See Figure 2(b). In this case,
the corridor can be arbitrarily wide. Condition C1 pre-
vents the “scratching of the exterior” of S. Condition C2
disallows the first and last links (the two extreme type-3
links) of the corridor to overlap each other when they
have opposite directions. That is, the corridor cannot
go around a “loop”. Condition C2 allows us to prove
Lemma 2 in Section 4 which in turns shows the correct-
ness of our algorithm in Section 4. At this point, we do
not know if Lemma 2 will hold without condition C2.
Nevertheless, we believe that condition C2 is not too

restrictive since a corridor intuitively means a passage
through a region.

3 Widest empty L-shaped corridor

We shall assume that neither of the links of the widest
empty L-shaped corridor can be extended to become
an empty 1-link corridor. Otherwise, we can transform
the widest empty 1-link corridor into a widest empty
L-shaped corridor simply by adding an arbitrarily wide
link outside the convex hull of S. We call the corridor
boundary that contains a convex (resp. concave) corner
with respect to the interior of the corridor an outer (resp.
inner) boundary. Each boundary consists of two rays
which we call boundary legs. We call an empty L-shaped
corridor non-ezpansive if each boundary leg contains a
point of S and each outer boundary leg contains a point
of S in its relative interior.

Lemma 1 For any emply L-shaped corridor C, there
ezisis a non-expansive emply L-shaped corridor no nar-
rower than C.

Proof (Sketch) If r is a boundary leg and there is no
point of S lying on it (in its relative interior if r is an
outer boundary leg), then we claim that we can slide
r until r hits a point of S (in its relative interior if r
is an outer boundary leg). Otherwise, either the link
not bounded by r can be extended to become an empty
corridor or there is no point of S lying on one side of C,
a contradiction. Hence, one can repeat the above until
C becomes non-expansive. O

We first present algorithm D to construct certain
empty L-shaped corridors and then show how to use it
to find the widest empty L-shaped corridor.

3.1 Algorithm D

Let S be {p;i : 1 < i< n}. Add the point p, at y = +c0
to S. Then S U {po} induces n(n — 1) + n vectors from
one point in S to a point in SU{ps, }. Note that pspe.? is
a ray shooting vertically upward from p;. Imagine that
we sweep the positive y-axis for a full circle in the clock-
wise direction. The direction of each vector will become
consistent with the rotating positive y-axis at some time
and we sort the vectors in O(n?logn) time according
to the chronological order of these events. We examine
these vectors in this order. For each vector pzp;, we ro-
tate the plane (in the counter-clockwise direction) until
pzp1 points vertically upward. Let the z-coordinate of
p;'i;l be zo. We assume for the time being that the fol-
lowing queries can be answered in O(1) amortized time

27y denotes the vector from z to y.

each. We shall explain in Section 3.2 how to support
these queries.

1. For any p;, report the two points that will be hit first
if a horizontal (resp. vertical) ray shooting right-
ward (resp. upward) from p; is rotated clockwisely
and counter-clockwisely.

2. For any p;, report p; such that z(p;) > zo, y(pj) >
y(p:), and z(p;) is minimized (y(p;) is minimized).

3. For any p;, report p; such that z(p;) < 2o, y(p;) >
y(p:), and z(p;) is maximized.

4. Define circle(pi,pj) to be the circle with p;p;> as
diameter. Given p; and p; such that z(p;) > z(p;)
and y(p;) < y(pj), report the two points inside or
on circle(p;, pj) that will be hit first if a horizontal
(resp. vertical) ray shooting leftward (resp. down-
ward) from p; is rotated clockwisely and counter-
clockwisely.

We construct four types of candidates as follows.

Candidate 1. This candidate handles the case when
p1 and ps lie on the outer boundary. See Figure 3(a).
For each pi such that y(pr) < y(p2) and z(pr) > =,
set the outer boundary to be the L passing through p;,
p2, and pg. Use query 3 to find the two points with
the minimum z-coordinate and minimum y-coordinate,
respectively, in the open convex region enclosed by the
outer boundary. Set the inner boundary to be the L
passing through the two points found. This produces
candidate 1 in O(1) time per pg.

Candidate 2. From each candidate 1, we construct a
candidate 2 by applying a rotational deformation. We
describe below the case where py # pe. The case where
Pi1 = Poo can be handled similarly. Let p; be the point
lying on the horizontal outer boundary leg. Let p; and
p; be the two points lying on the vertical and horizontal
inner boundary legs, respectively. See Figure 3(b). We
first rotate the corridor in the clockwise direction while
requiring its outer boundary to pass through ps and p;
and its inner boundary to pass through p; and p; at all
times. The rotation terminates as soon as a boundary
leg hits a point of S. The amount of rotation allowed can
be determined as follows. Use query 1 (resp. query 2)
to find the minimum degree 6; (resp. ;) that the parts
of the horizontal (resp. vertical) boundary legs from py
and p; to £ = 400 (resp. from p; and p; to y = +00)
can rotate before hitting a point of S. The degree 3
(resp. 04) that the corner of the outer boundary be-
tween pz and p; (resp. the corner of the inner boundary

3%y denotes the line segment joining z and y.

59

between p; and p;) can rotate before hitting a point of
S can be computed using queries 5 and 6. The amount
of rotation allowed is thus min{#,,0,,0s,04}. Since the
width of each link of candidate 1 changes sinusoidally
with the degree of rotation, we can determine in O(1)
time the widest empty L-shaped corridor C; that can
be obtained during the clockwise rotation. Similarly,
we rotate candidate 1 in the counter-clockwise direction
(while requiring its outer boundary to pass through p;
and p; and its inner boundary to pass through p; and p;
at all times) and determine the widest empty L-shaped
corridor C that can be obtained. We pick the wider one
between C; and C; as candidate 2.

Candidate 3. This candidate handles the case when
p1 and pa lie on the inner boundary. See Figure 3(c).
For each p; such that y(pr) < y(p2), use query 4 to find
the point p; that has the maximum z-coordinate while
z(pj) < zo and y(p;) > y(pe). If z(p;) < z(ps), then
set the outer boundary to be the L passing through p;
and pg. Otherwise, we abort (because py does not lie on
the outer boundary). If we have not aborted, then use
query 3 to find the point with the minimum y-coordinate
in the open convex region enclosed by the outer bound-
ary. Set the inner boundary to be the L passing p;, p2,
and the point found. This produces candidate 3 in O(1)
time per pg.

Candidate 4. This candidate is obtained by applying
a rotational deformation to candidate 3. It is similar to
computing candidate 2.

Theorem.1 A widest emply L-shaped corridor for a set
of n points can be computed in O(n3) time.

Proof (Sketch) Given a widest empty non-expansive
L-shaped corridor C, we perform clockwise rotational de-
formation (as described in algorithm D) until a boundary
leg contains two points of S. This possibly deformed C
must be a candidate 1 or 3 computed by algorithm D on
S or the mirror image of S obtained by flipping S around
the y-axis. Thus, the original C must be a candidate 1
or 2 or 3 or 4. (Some degenerate cases are not covered
in this extended abstract.) O

3.2 Preprocessing

For clarity, we use Sp?i'; to denote the set of points after

rotating to make p,p; pointing upward. S denotes the
original set of points.

Queries 1 and 2. For each point pi in .S, we store the
other points of S in a doubly linked circular list list(px)
sorted in angular order around pj. The total time needed
for computing all lis¢(-)’s is O(n? logn). Since algorithm
D works on the angular ordering of the vectors induced

60

]

P

Figure 3.

by SU {pw}, the answers to successive invocations of
query 1 to px can be answered by traversing list(p:).
Hence query 1 takes O(1) amortized time. Query 2 can
be similarly supported.

Queries 3 and 4. If Sp;;‘ is already sorted in non-
" increasing y-coordinates, then we can scan .S'p—;}-;l in this
order and for each p; encountered, we can compute and
record the answers of applying queries 3 and 4 to pg
in O(1) time. However, we cannot run a sorting algo-
rithm on each Sp;'i; because the total time will then be
O(n3logn). S induces n(n — 1)/2 line segments joining
two points of S. First, we obtain a list, segment(S), of
these line segments sorted by slopes in O(n?log n) time.
Third, imagine that we rotate the plane in the counter-
clockwise direction and stop when some line segment
Pipj becomes horizontal. This stop can be detected eas-
~ ily since P;p; must be the first element in segment(S).
The ordering of points (by y-coordinates) remains the
same before this stop and only p; and p; should be
swapped afterward. We can then continue the rotation
to the second stop (second element in segmeni(S)) and
so on. If we use a persistent search tree to store the
ordering of points, then each swapping takes O(1) amor-
tized time (no rebalancing is needed). Thus, the total
time taken is O(n3).

Queries 5 and 6. For every two points p; and pj of S
we compute a doubly linked circular list, cir_lis{(p;, p;)
(resp. cir_lis(p;, p;)) of points lying in circle(p;, p;)
sorted in angular order around p; (resp. p;). This can
be done by scanning list(p;) (resp. list(p;)) and include
a point whenever it is contained in circle(p;, p;). Since
algorithm D works on the angular ordering of the vec-
tors induced by S U {p}, answering the invocations
of queries 5 and 6 to p; and p; correspond to traversing
cir_lis(p;, p;) and cir_lis(p;, p;) as in answering query 1.
Thus, queries 5 and 6 also take O(1) amortized time.

4 Widest empty regular corridor

We say that a regular corridor is supported if each bound-
ing line segment /ray of every link contains a point of S.

If the two bounding line segments/rays of a link contains
points p; and p; respectively, then we say that the link is
supported by p; and pj. The notion of support is similar
to but less stringent than the non-expansive property.
A result analogous to Lemma 1 holds for empty regular
corridors.

Lemma 2 For any empty regular corridor, there exists
a supporied empty regular corridor with at least the same
width and no more links. O

The proof strategy is as follows. Let N; be the set
of empty regular corridors that have at least the same
width as the given empty regular corridor. Pick N2 C Ny
that minimizes the number of links. Pick N3 C N, that
maximizes the sum of widths of links. Then it can be
shown that each element of N3 is supported; otherwise,
either condition C1 or condition C2 or the minimality
of number of links is violated. The detail involves case
analysis and is omitted in this extended abstract.

Observation : A supported empty regular corridor
satisfies conditions C1 and C2 in Section 2.

4.1 Computing the optimal solution

We associate a direction of traversal with regular corri-
dor. Each regular corridor (resp. link) will give rise to
two directed regular corridors (resp. links). For brevity,
from now on all regular corridor is assumed to be sup-
ported and directed. The angle of a link is defined to be
the angle that its direction makes with the z-axis (be-
tween —x and 7). For all p;, p; € S, define link(p;, p;,0),
—7 < 8 < =, to be the 1-link corridor (possibly non-
empty) that has an angle equal to 8 and is supported by
pi and p;. Cut link(p;, p;,9) into two halves along 7;p;.
Use link™ (p;, p;,0) (resp. link™(pi,p;,0)) to denote the
half that is after (resp. before) P;p; in the direction of
link(p;, pj,0). Define Cy(p;,pj,0), —®* < 0 < =, to be a
widest almost empty regular corridor with £ links such
that its last link has angle 8 and is supported by p; and
Pj. Ce(pi, pj,9) is almost empty if it does not contain any
point of S after we remove the largest unbounded rectan-
gle contained in lz'nk'*(p;,pj,ﬁ) (see Figure 4). Clearly,
any empty regular corridor is also almost empty.

Refer to Figure 4. Take some C¢—1(pr,p1,3) and
link(p;, pj,0) such that link(p;,p;,0) is perpendicular
to and intersects link(pi,pi,3). Let link(p;,p;,0) N
link(px, 1, B) be R (a rectangular region). We can ob-
tain a regular corridor with £ links as follows: remove the
portion of link* (py, pi, B) after R, remove the portion of
link™ (p;, pj, 0) before R, and then concatenate the re-
mains of C¢—1(px, pi, B) and link(p;, p;,). If the corridor
obtained still contains p;, p;j, px, and p; on its boundary,

Figure 4. The solid lines represent Ce—1(px,p1,8). The
dashed lines represent link(p;,p;,0). The shaded region is
the largest unbounded rectangle contained in link* (pi, p;, 8).

then we define it to be Ce—1(px,p1,8) ® link(p;, pj,9).
Otherwise, Ce—1(px, o1,) ® link(pi, pj,) is undefined.

Define A(pi,pj,0) to be the width of link(p;, p;,0).
A(pi, pj,0) is a sinusoidal function in § with a constant
phase difference dependent on p; and p;.* Define A to be
the set of all A(*, *,0+ A)’s where A = 0, +7/2, £37/2.
Let I(A) be the set of all intersections of functions in
A within the range [, 7]. For each p; and pj, let a;
be the nonnegative angle that the line through p; and p;
makes with the z-axis. Define B to be [-7, 7]N{a;;+A :
A = 0,%7/2, %7, +37/2,4+2x}. Define wy(p;, p;,0) to
be the width of Ci(pi,pj,0). For any particular 6, we
take we(pi, pj, 0) to be zero if Cy(p;, pj,d) does not exist.
Observation : |A| = O(n?), |B| = O(n?), and |I(A)| =
O(n*).

Lemma 3 Given any £ > 1 and 6 € [-m, 7],
Ce(pi, pj,0) has the same width as Cy-1(pr,p1,B) ©
link(p.',pj,o) fOT some Ct-l(Pk»Phﬂ)'

Proof Set pi and p; to be the two points supporting
the last but one link of Cy(pi, pj,0) and set 8 to be the
angle of that link. O

Lemma 4 Given p; and pj, we(pi,pj,0) is a possi-
bly discontinuous piecewise sinusoidal function in 0 on
[~=,7x]. The sinusoidal pieces are arc segments of func-
tions in A and discontinuilies can only occur at values
in B.

Proof (Sketch) By induction on £. Consider £ = 1.
w1(pi, pj, 0) = A(pi, pj, 0) or zero depending on whether
link(p;, pj, 0) is almost empty or not. And the change can
only occur at those values of ¢ such that the bounding
line through p; or p; passes through another point of S.
Those values of § clearly belongs to B and this proves
the basis step.

41t is actually not a sinusoidal function since we take the ab-
solute value. But we shall abuse the notation for convenience.

61

Assume that the theorem is true for w_1 (px, p1, 0) for
all p; and p; and £ > 1. By Lemma 3, we can first com-
pute the width function, denoted by pp,p, (pi, pj,0), of
Ce-1(pk, p1, B) ® link(p;, pj, 0) for all p; and p;. We take
Bpup: (Pi, P, 0) to be zero if Co—1(px, pi1, B)® link(pi, p;, 9)
is undefined or not almost empty. Then w¢(p;,p;,0) is
the upper envelope of the u..(p;, p;,0)’s.

If Ce-1(pk,p1,0) @ link(p;,p;,0) is defined, then
l-‘p,.pg(Pi:pj) 9) = Inin{wl-l(Phph ﬁ)s)‘(pi:p.‘i’ 0)} Con-
sider the range [0, #/2] for 6. B must be equal to §+A for
some A = *x/2. To find pyp,p, (pi,pj,0) within [0, 7/2],
we should shift we—3(pk, p1, 8) by —A and then find the
lower envelope of it and A(p;,p;,) within [0, 7/2]. By
induction assumption, introducing a phase difference of
+7/2 to the sinusoidal pieces of w¢—1(pk, p1, B) will gen-
erate sinusoidal pieces of some other functions in A.
Therefore, the sinusoidal pieces of yp,p, (pi, pj,8) within
[0, 7/2] are also arc segments of functions in A. The
other three ranges for § can be handled similarly. We
analyze the discontinuities in pp,,p, (i, pj,) below.

For brevity, when a discontinuity occurs at a value
in B, we say that it is in B. As 6 is varied, if
Ce-1(pr,p1, B) is defined, then a change in the status
of Cy-1(px,p1,B) ® link(p;,pj,0) being defined or al-
most empty may take place when a bounding line of
link(pi, pj, 0) or link(px, 1, B) is about to include or lose
a point of S. In the first case, 6 is clearly in B. In the
second case, 0 isin B and so is 6 as they differ by +7/2 or
437 /2. The remaining possibility is that Cy—1(px, m1, 8)
is not defined. That is, a discontinuity in we—1(pk,p1, 5)
is shifted and becomes a discontinuity in we(pi, pj,9).
By inspecting the possible amounts of shifts for different
values of m, it can be verified that the shifted disconti-
nuities are still in B.

Finally, since all u..(p;, pj, 9)’s satisfy the conditions
of the lemma and their mutual intersections are inter-
sections of functions in A4, their upper envelope that is
we(pi, pj, 0) satisfies the conditions of the lemma too.

The algorithm is a direct implementation of the in-
ductive proof of Lemma 4. Computing pp,p, (i, pj,)
involves finding the lower envelope of appropriate por-
tions of we_1(px,p1,8) and A(pi,pj,0) and pulling
the curve down to zero whenever Cy_i(pe,p:1,0) &
link(p;, pj,0) is undefined or not almost empty. By
rotating link(px, p,) and link(p;,p;,0), we can com-
pute in O(n) time the O(n) intervals on the f-axis
within which Cy-1(ps, p1, B) ® link(p;, p;, 0) is undefined
or not almost empty. Given these intervals, we can do a
plane sweep of the appropriate portions of we—1(pk, 1,)
and A(p;, pj,0) and obtain p,, p, (pi, pj, 0) in O(n*) time.

62

Then we can sweep the O(n?) p.a(pi,pj,0)’s and take
we(pi, pj, §) to be the upper envelope. This takes O(n®)
time and hence a total of O(n®) time for the O(n?)
we(*, *, 0)’s. '

Theorem 2 The widest emply regular corridor of at
most £ links can be computed in O(¢n®) time. O

4.2 An approximation algorithm

We first present a faster algorithm when the corridor is
restricted to be orthogonal. The direction of each link
must then be 0 or 7/2 or 7 or —7/2. This will enable us
to speed up the computation of each we(pi, pj,0) in the
algorithm described in Section 4.1. Suppose that § = 0
and consider Ce—1(px, 1, —7/2) @ link(p;, pj,0). Let yi
be the y-coordinate of the highest point of S lying in the
open region bounded by link* (px, pi, —7/2). Let z;; be
the z-coordinate of the rightmost point of S lying in the
open region bounded by link™ (pi,pj,0). The following
are necessary and sufficient conditions that the result of
@ will be defined and almost empty:

1. ;; < min{z(px), z(p)} < min{z(p:), z(p;)}
max{z(px), z(p1)} < max{z(p;), z(p;)}
- min{y(px), y(p1)} > min{y(p:), ¥(pj)} 2 v
. max{y(pe), y(p1)} > max{y(p:), ¥(p;)}

N

By using an orthogonal range searching struc-
ture on S, ym and z;; can be precomputed in
O(log?n) time. We map each Cie—1(pr,pr,—7/2)
into the point (min{z(pe),z(m)}, max{z(p:),=z(m)},
min{y(p:), y(p1)}, max{y(px), ¥(1)}, Ykl
we—1(pk, o1, —7/2)) in RE. Using an appropriate multi-
level tree structure to store these points, we can search
in O(log’® n) time to find the widest Ce—1(pk,p1, —7/2)
that satisfies conditions (1)-(4). The other orientations
can be handled similarly.

Lemma 5 The widest emply regular corridor with at
most £ links can be computed in O(¢n?log®n) time if
it is restricied to be orthogonal. O

Our approximation algorithm works as follows. We
choose a real number a > 0 and draw |47/a] directed
lines through the origin. Then we treat each directed line
as the y-axis and apply Lemma 5. Finally, we select the
widest corridor among those computed. The following
theorem shows that « can be chosen such that the width
of the corridor computed can be made arbitrarily close
to the optimal.

Theorem 3 For any ¢ > 0, an emply regular corridor
with at most £ links and width at least (1 — €) times the
optimal can be computed in O((1/€)¢n?log® n) time.

Proof (Sketch) We first shrink/expand S so that the
smallest enclosing square of S has side length equal to
1. Suppose that we have drawn the directed lines as de-
scribed above. The value of a will be fixed later. Let
C be a widest empty regular corridor with at most £
links. By Lemma 2, we can assume that C' is supported.
We apply a clockwise rotational deformation to C' until
either some link of C is parallel to some directed line
or the width of some link of C becomes zero. Empti-
ness is maintained throughout the rotation. When a
link is rotated, we always take the pivots to be the cur-
rent rightmost point of S on the lower boundary and
the current leftmost point of S on the upper boundary.
Let A be a link with the minimum width when the ro-
tational deformation stops. Consider some moment of
the rotational deformation at which A began to rotate
about different pivots. Let o’ be the angle that A would
turn when A would rotate about different pivots again
(o’ € a). It can be shown that the decrease in width in
this stage is at most v/2a’. Generalizing this argument,
we get an upper bound of v2a on the total decrease
in width and hence the error of approximation. By the
pigeonhole principle, there exists a horizontal or verti-
cal empty 1-link corridor with width at least 1/(n — 1).
Therefore, the error ratio is at most v/2(n — 1)a. The
theorem follows if we set « to be e/v/2(n—1). O

References

[1] S. CHATTOPADHYAY AND P. Das, The k-dense corri-
dor problems, Pattern Recognition Letters, 11 (1990),
pp. 463-469.

[2] M. HouLE AND A. MACIEL, Finding the widest empty
corridor through a set of points, in Snapshots of computa-
tional and discrete geometry, G. Toussaint, ed., pp. 201-
213.

[3] R. JANARDAN AND F. PREPARATA, Widest-corridor prob-
lems, Tech. Report TR 93-17, Department of Computer
Science, University of Minnesota (Twin Cities), March
1993. See also Proceedings of the Fifth Canadian Con-
ference on Computational Geometry, pp. 426-431, 1993.

[4] N. SARNAK AND R. TARJAN, Planar point location using
persistent search trees, Communications of the ACM, 29
(1986), pp. 669-679.

