63

The colored quadrant priority search tree
with an application to the
all-nearest-foreign-neighbors problem

Andreas Brinkmann, Thorsten Graf, Klaus Hinrichs

Institut fiir numerische und instrumentelle Mathematik -INFORMATIK-
Westfalische Wilhelms-Universitat Miinster
Einsteinstr. 62 D-48149 Miinster e-mail: graf@math.uni-muenster.de khh@math.uni-muenster.de
EXTENDED ABSTRACT

Abstract. Consider a dynamic set of points in the plane having different colors. Let X; and K3 be two keys according
to which points may be sorted, e.g. the z- and the y-coordinate. A point p € S is called proper with respect to a query
point po € S iff K1(po) < K1(p), K2(po) < K2(p), and if p has a different color than po.

We present the colored quadrant priority search tree (CQPST) which supports the efficient search for all k& proper points
in O(logn + k) time and for the minimal proper point with respect to key K, in O(log n) time.

As an application we show that the CQPST can be used to solve the all-nearest-foreign neigbors problem with respect
to any arbitrary L‘-metric (1 < ¢ < o0) in optimal O(nlogn) time.

1 The colored quadrant priority search tree

Let S be a dynamic set of points in the plane having different colors, and let c(p) denote the color of a point p € S. Let
K and K; be two keys according to which points in the plane may be sorted, e.g. the z-coordinate, the y-coordinate, or
the sum of the coordinate values. For a point p in the plane X;(p) and X2(p) denote the values of p with respect to ; and
K2, respectively. For ease of presentation we assume that at any time the set S does not contain any two points which have
equal X;- or K3-values. This restriction is not essential and can be easily overcome.

Let p and py be two points in S. Then p is called proper with respect to po iff K1(p0) < K1(p), K2(po) < Ko(p), and p
and po have different colors. The set of proper points for a point py is denoted by PP(pg). We consider the following two
problems: For a query point po € S determine 1) the set PP(po) and 2) the minimal point in PP(po) with respect to K. If
PP(po) is empty the queries should return nil. The examples in Figure 1 show for different keys K, and X; the ranges which
contain the proper points with respect to po. Different colors are indicated by different shadings of the points. A circled
point is the minimal proper point in PP(py) with respect to 5.

Do

K, =-z Ki=z-y
Kyi=—y Kyi=y Figure 1: Ranges for keys K; and K,

In this paper we present the colored quadrant priority search tree (CQPST) which supports the following operations:

—

. insert(p): Insert the point p into the CQPST.

N

. delete(p): Remove the point p from the CQPST.

w

. AllProper(po): Return the set PP(po) of proper points or the nil-set.

>

- MinProper(po): Report the point in PP(po) which is minimal with respect to K3 or the nil-point.

64

1.1 Structure of the CQPST

The CQPST is based on the priority search tree which supports an efficient three sided range query ([9], [6]). The operation
AllProper of the CQPST is similar to the three sided range query supported by the priority search tree. However, since
priority search trees cannot distinguish points with respect to their color they do not support the operations MinProper and
AllProper.

The skeleton of the CQPST is a binary tree with constant linkage cost per update (CLC-tree) ([11]) which requires O(log n)
update time with only O(1) rotations. This rotation property is of great importance since each rotation itself may cause an
O(logn) time operation. A unifying framework for CLC-trees can be found in [11]. Special CLC-tree schemes are e.g. the

half balanced tree ([10]) and the red-black tree ([4, 15, 2]).
The CQPST is a 0-2 binary tree, i.e. each inner node has exactly two sons, and a leaf search tree for the K,-values in S,
i.e. for every value K2(p) (p € S) there exists one leaf in the tree. Each node contains space to store a point which is possibly

the nil-point. In each node & of the CQPST we additionally store the following information: '
I1. The split value sv(k) which is the maximum X,-value stored in a leaf of its left subtree LST(k).

2. The maximal X;-value Maz(k) of the points stored in the subtree rooted by the node k£ which have a color different
from the color of the point stored in k.

The value of Maz(k) is essential for finding MinProper(po) for a query point Po € S stored in node k. The points are stored
in the nodes of the CQPST according to the following three conditions:

Cl. Each point p lies on the path from the root to the leaf with value Ka(p).
C2. The K,-values of the points stored along an arbitrary root-to-leaf path are in decreasing order.
C3. If a node contains a point then its father does, too.

Condition C2 implies a heap-property of the CQPST with respect to the Ki-values, i.e. for each subtree of the CQPST the
root node is the node with the largest X;-value. Note that K2(p) (except for the maximal K2(p)) is the split-value of the
node encountered after the first right turn on the path from the leaf containing X2(p) to the root. Condition C1 implies that
at most one of two sibling leaves may contain a point. In the next two sections we show that the values sv() and Maz()
stored in the nodes and the three conditions (C1, C2, and C3) can be maintained during insertions, deletions and rebalancing

operations as invariants of the CQPST.

1.2 Inserting and deleting

A point p is inserted into the CQPST by first inserting K,(p) and performing the necessary rebalancing operations. As
we will show in section 1.3 the CQPST can be rebalanced in optimal O(logn) time. Then we sift the point down the tree
according to its weight, i.e. XC;(p): Compare the X,-values of p and the point stored in the root node, store the point with
the larger K;-value and continue this operation with the other point, exploring the root of the left or right subtree depending
on the Ko-value of this point, until an empty node is reached. It is not difficult to prove that there exists an empty node &*
which terminates this process. All invariants except I2 can be easily maintained ([6]). I2 is maintained as follows: Maz()
may only change for nodes in the path from the root to the node k* and is updated during the sift-down process: Let p be
a point to be sifted down and ¢ be the point stored in the node k under consideration:

If ¢(p) = c(q) then Maz(k) does not change. If c¢(p) # c(g) then we have to distinguish two cases:

a) Ki(p) < Ki(q):
The point p is sifted down and ¢ remains in node k. If £1(p) > Maz(k) then we update M az(k) := K1(p).

b) Ki(p) > Ki(g):
The point ¢ is sifted down and p is stored in node k. Due to the heap property of the CQPST the point q is the

K;-maximal point stored below p with different color than p, and we update Maz(k) := K,(q).

This shows that after the insertion process all invariants of the CQPST are maintained correctly.

To delete a point p first search for it and remove it from its node. Fill the gap by sifting successor points up the tree
without changing the tree structure. The X,-heap property is maintained by pushing up the point contained in the son nodes

65

which has the larger X;-value. This process is continued until we arrive at a node &’ which has two empty son nodes or is a
leaf. Finally delete the leaf containing X»(p). Again, all invariants except of I2 can be easily maintained. The invariant I2
can be maintained as follows: The only nodes for which Maz() may change are the nodes along the path K from the root
to k’. The Maz()-values in the nodes of K are updated bottom-up. Let k be a node of K storing a point q and assume that
the Maz()-values of the nodes below k have already been updated. Denote by ¢; and ¢, the points stored in the left son
node k; and the right son node &, of &, respectively. We distinguish three cases:

1. ¢ =nil and ¢, = nil
Maz(k) is undefined since there are no points stored in the subtree rooted by k.

2. q # nil xor q, # nil
Let g* be the point stored in the non-empty node k* € {ki, k.}. If c(q) = c(¢*) then we update Maz(k) := Maz(k*),

otherwise Max(k) := K1(¢*).

3. q # nil and ¢, # nil
c(qr) = c(q) = c(gr) max{Maz(k), Maz(k,)}

c(q) # c(q) = c(qr) _) max{Mazx(k,),Ki(a)}
¥ g S olg) g (Ve UPdate Maz(k) = 3 o o an(hn. K ()
c(qt) # c(q) # clar) min{X,(q),K1(¢-)}

An inductive argument shows that after a bottom-up walk of the path K all nodes in the CQPST store correct Maz()-values
and all invariants hold. To complete the deletion operation we finally rebalance the tree if necessary.

1.3 Rebalancing the CQPST

It can be easily shown that the invariants of the CQPST can be maintained when rebalancing the tree with local rebalancing
operations. From the description of the ordinary priority search tree in [6] it follows that the conditions C1, C2, and C3
and invariant I1 can be maintained during local rebalancing operations. In the previous section we showed how to update
the Maz()-values bottom up after the deletion of a point. It is easy to see that the same process applies to restore the
Maz()-values. If all K,-values are known in advance rebalancing can be avoided by basing the CQPST on the skeleton

priority search tree ([12]).

1.4 Performing the queries

The following Lemmas give some properties of the CQPST which we will use to realize the operations AllProper and Min-
Proper. Let LST(k) denote the left and RST(k) the right subtree of k. The following lemmas are easy to prove, therefore
the proofs have been omitted:

Lemma 1.1. Let k be an inner node of the CQPST, then the following holds:
1. For all points q € LST(k): K(q) < sv(k).
2. For all points q € RST(k): Ka(q) > sv(k).

Let po be a query point. Let K := {r = ki,...,km} be the path from the root r of the CQPST to the first node k,, with
split value K2(po). If po is the point with the largest Kz-value then this is the right-most leaf of the CQPST. Otherwise k,y,
is an inner node. A node k, € K (1 < v <m—1) is called a branch node iff k41 is the left son of k,. The node &, is a
branch node by definition.

Lemma 1.2. Let the path K be as described above. Then all proper points are either stored along the path K or in the right
subtrees rooted by branch nodes.

Lemma 1.3. The proper point with minimal Ko-value is either stored along the path K or in RST(k,) of the deepest branch
node k, having a right subtree with at least one proper point.

66

' Figure 2 shows an example with branch nodes k; and k4. The left subtrees which need not be considered are shaded. In
the example the point MinProper(p) of the point p stored in r is found in the hilited node.

T=k1

Figure 2: Path K = {r = ky, k2, k3, k4 = km }

To perform the operation MinProper we process the path K in reverse order as follows. Starting in node k,, determine
for each branch node &, the smallest proper point in RST(k,) or determine in time O(1) the non-existence of such a point:

Start in the right son node &k of k,. If the point g stored in k satisfies K1(g) < Ki(po) then the heap property C2 of
the CQPST implies that this is also true for all other points in RST(k,). There exists no proper point in RST(k,) and we
continue with &, ;.
If the point ¢ stored in node & satisfies X, (q) > X,(po) and c(g) # ¢(p) then a proper point has been found. If X,(q) > K, (po)
and c(p) = c(q) then a proper point is contained in RST'(k,) iff Maz(k) > K,(po). Hence we can decide in O(1) time whether
or not a subtree of the CQPST contains a proper point.
If a proper point is contained in RST(k,) then we tentatively continue the process in the left subtree of k. If a proper point
is contained in this subtree then this point is better than any proper point possibly contained in the right subtree of k. If
it turns out that this left subtree does not contain a proper point, which can be detected in O(1) time, we continue with
the right subtree of k£ for which we know that it stores at least one proper point. The process stops if we cannot choose a
subtree containing a proper point any more.

By Lemma 1.3 we can stop climbing the path K as soon as one proper point has been found. Otherwise climb up path K
and continue with the predecessor branch node k, of k, if no proper point is stored in the nodes between k, and k,. After
processing K we output the “best” proper point or the nilpoint.

To perform the operation AllProper we walk down the path K as described above. During this walk it is sufficient to
examine the points stored along K and the right subtrees rooted by branch nodes (see Lemma 1.2):
Let &, be a branch node. Then for all points g stored in RST'(k,) we have K3(po) < K2(g) by Lemma 1.1. The heap property
of the CQPST with respect to K; guarantees that all points in the subtree rooted by a node which stores a point with &;-value
smaller than K (po) are non-proper. Therefore all proper points in RST (k) can be reported by walking down paths starting
in the root node of RST(k,), stopping as soon as the first point is found for which no proper point is contained in its subtrees.
The paths may be constructed by breadth-first or depth-first search. The proper points found during this process are returned.

A straightforward and easy analysis of the CQPST shows that insert, delete, and MinProper can be performed in O(log)
time, and that AllProper requires O(logn + k) time where k denotes the number of proper points reported. The CQPST can
be implemented such that its space requirement is linear in the number of points it stores.

2 Applying the CQPST to the ANFN problem
In this section we present an application of the CQPST to the all-nearest-foreign-neighbors (ANFN) problem:

Given a finite set S of points in the plane R?, |S| = n, S = UY, S; with SinS;=0fori,je{1,...,N},i#3j.
Determine for each point p € S; a nearest neighbor in S\ S;.

We reformulate the problem in an intuitive way: Let us color each point set with a unique color and let c(p) denote the color
of a point p € S. Now we have to find for each point a nearest neighbor with a different color. Since algorithms which solve
the ANFN problem also solve the all-nearest-neighbors problem by choosing configurations that do not contain two points
with the same color, Q(nlogn) is a lower bound for the ANFN problem.

Distances between points are measured with respect to an arbitrary Lt-metric. For two points p,q € R? their L*-distance

67

(Minkowski distance) is given by dy(p,q) = ([p.z —q.z[' +|py—qyl")t, 1<t < 00, and de(p,q) = max{|p.c—q.z|, |[p.y —
q.y|}. For the L'~ and L°— metrics [3] presents an algorithmfor solving the ANFN-problem in optimal O(nlogn) time.

The ANFN problem is solved by first distributing the points: Each color set S; is assigned a candidate set Ci, and the
points are distributed among the candidate sets such that the total number of points contained in the candidate sets is 8n.
After the distribution a nearest foreign neigbor of a point p € S; can be found in the candidate set C;. Hence we have
to solve a bichromatic ANFN-problem for each set S; and its candidate set C;; all points in the candidate sets loose their
original colors and are painted in a color different from the set’s color. [1] presents the first distribution algorithm for the
ANFN problem with respect to the L2-metric making use of several L2-Voronoi diagrams.

The algorithm presented in this paper uses the CQPST. In the final phase of our algorithm, i.e. solving the bichromatic
ANFN problem for each set S; and its candidate set C; we apply the algorithm in [5] which also works for arbitrary L!-metrics.

Qg(p) QAp)

Q4(P) Figure 3: Subdivision with L*°-nearest-foreign neighbors p;

Fix an arbitrary point p € S and subdivide the plane into eight octants Q;(p),...,Qs(p) (see Figure 3). For each octant
we determine a L*-nearest-foreign neighbor of p, these points are denoted by pi,...,ps. It suffices to show how to find a
point p; in the octant Q1 (p). The points pa,. .., ps for the other octants are determined analogously.

We could choose K; = —(z + y) and K; = y which describe for £; > —(p.z + p.y) and K, > p.y the octant Q;(p).
However, we do not search for a nearest foreign neighbor of p in Q,(p) with respect to K; or K2 as it is supported by the
CQPST but with respect to the z-coordinate. Hence the problem cannot be solved directly. To find a point p; € Q;(p)
we perform a top-down sweep and insert the w-tansformed points into the CQPST where = is the following transformation:
m: (z,y) — (z,z +y). It is easy to verify that a point g is contained in Q;(p) iff 7(q) is contained in Q.(p) U Q3(p). We
therefore choose K; = —z and K; = —y. Clearly, the L*°-nearest-foreign neighbor p, of p in Q,(p) has already been inserted
into the CQPST when the sweep-line encounters p. Then MinProper(p) returns the L°-nearest-foreign neighbor p; since
the z-coordinates of the points are invariant under =. The following Lemma implies that if a point ¢ € S has p as nearest
foreign neighbor then c(g) = c(p;) for at least one € {1,...,8}.

Lemma 2.1. Letp, € S be a L*-nearest-foreign neighbor of p € S contained in Q,(p). Then for each point r € Q,(p) with

c(p) # c(r) and c(p1) # c(r) we have
dt(T,Pl) < dt(’l",p)

The proof is easy, it uses the same argument as the proof of Theorem 2 in [7].

Hence we insert the point p into the candidate sets corresponding to the points py,...,ps. Lemma 2.1 then implies that
for each point p € S a nearest foreign neighbor can be found in the candidate set of its color ¢(p). This shows that after the
final phase of the algorithm, i.e. solving the bichromatic ANFN problems for the sets S; and their assigned candidate sets
C;, for each point a nearest foreign neighbor has been determined correctly.

The analysis of the algorithm is straightforward. In each sweep each point is inserted into a CQPST exactly once. For
each insertion event we perform two MinProper-queries which cost O(logn) time. Hence the total cost for the sweeps to
distribute the points among the candidate sets sums up to O(nlogn). Applying the plane-sweep algorithm [5| to each of
the pairs (S;,C;) (i = 1,...,m) costs O(nlogn) time in total. Since a CQPST requires linear space this is also true for our
algorithm.

68

References

1

10

11

12

13
14

15
16

A.Aggarwal, H.Edelsbrunner, P.Raghavan and P.Tiwari: Optimal time bounds for some proximity problems in the plane,
Information Processing Letters 42, 55-60 (1992).

Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest, Introduction to Algorithms, MIT Press, 1989.

Th. Graf, K. Hinrichs: Algorithms on colored point sets, Proceedings of the 5th Canadian Conference on Computational
Geometry CCCG 93, (1993).

L.J. Guibas and R. Sedgewick: A Dichromatic Framework for Balanced trees, Proceedings of the 19th IEEE Sympsoium
on Foundation of Computer Science, 821 (1978).

K Hinrichs, J.Nievergelt, P.Schorn: An all-round sweep algorithm for 2-dimensional nearest-neighbor problems, Acta
Informatica, 29(4), 383-394 (1992).

Ch.Icking, R.Klein, Th.Ottmann: Priority search trees in secondary memory, in H. Géttler und H.J. Schneider (eds.),
Graphtheoretic Concepts in Computer Science (WG '87), Lecture Notes in Computer Science 314, Springer-Verlag, New
York, 84-93, (1987).

J.Katajainen: The region approach for computing relative neighborhood graphs in the L, metric, Computing 40, 147-161
(1988).

D.T. Lee and C.K. Wong: Voronoi diagrams in L; (L) metrics with 2-dimensional storage applications, SIAM Journal
on Computing 9(1), 200-211 (1980).

E.M.McCreight: Priority Search Trees, SIAM J.Comput., 14,2, (1985).

H.J.Olivie: A new class of balanced search trees: Half-balanced binary search trees, R.A.I.R.O. Informatique Theorique
16, 51-71, (1982).

Th. Ottmann, D. Wood: Updating Binary Trees with Constant Linkage Cost, Research Report CS-89-45, Data Struc-
turing Group, University of Waterloo (1989).

Th. Ottmann and P. Widmayer: Algorithmen und Datenstrukturen, Reihe Informatik, Band 70, BI Wissenschaftsverlag,
Mannheim, 1993.

F.P.Preparata and M.I.Shamos, Computational Geometry, 3rd pr., Springer-Verlag, New York, 1985.

M.Shamos, D.Hoey: Closest-point prablems, 16th Annual IEEE Symposium on Foundation of Computer Science, 151-162
(1975).

R.E. Tarjan, Data Structures and Network Algorithms, Society for Industrial Applied Mathematics, 1983.

P.Vaidya: An O(nlogn) algorithm for the all-nearest-neighbours-problem, Discrete & Computational Geometry 4, 101-
115 (1989).

