THE REGION APPROACH FOR SOME
DYNAMIC CLOSEST-POINT PROBLEMS.

EXTENDED ABSTRACT

June 27, 1994

ABSTRACT.

Let S be a set of n points in the spaceR k under the L; metric. We consider the
following dynamic problems

1) finding a nearest neighbor in S of any query point for t = 1,00.

2) finding a (1 + €)-nearest neighbor in S of any query point for ¢ €]1, 00l

3) maintenance of a closest pair of S.

Applying the region approach we reduce these problems to dynamic problem of
range searching for maximum.

Chazelle’s data structure for range searching for maximum [2] allows to achieve
query and update times of O(log**! nloglogn), using O(nlog*~2 n) space. Previ-
ously, no linear size data structure havin polylogarithmic update time was known
for maintenance of a closest pair of § inRg 2,

1. INTRODUCTION

Proximity problems in computational geometry are well studied. In this paper
we consider the dynamic version of the nearest neighbor problem and the closest
pair problem. We are given a set .5 of n points in k-dimensional space R*. The set
S is changed by insertions and deletions of points. In the closest pair problem we
have to compute a closest pair of S after each update. Distances are measured in
the Minkowski L;-metric, where 1 < ¢ < 0o0. In the nearest neighbor problem we
have to compute a point in S nearest to a query point.

Gabow, Bentley and Tarjan [3] reduced the Lo, (L;)-neighbor problem to orthant

searching for minimum. In R} (RE,),k > 1 they achieved O(log™***~1:1) 3) query
time,
O(nlogmax(k’l’l)n) preprocessing time and O(nlog®~!n) space. For the static
version of the Lo, - neighbor problem, S. Kapoor and M. Smid [5] gave a data struc-
ture of size O(nlog®~?n) that finds an Leo-neighbor of query point in O(log*~! n)
time. They solved the dynamic version of the L.,-neighbor problem with a query
time of O(log®~! nloglogn) and an amortized update time of O(log*~! nloglogn),
using O(nlog*~! n) space.

In the approximate neighbor problem we have to compute a (1+¢)-approximate
neighbor of a query point (the distance to (1 + ¢)-approximate neighbor is at most

Key words and phrases. region approach, dynamic maintenance, data structures.

Typeset by Ap4S-TEX

75

76

SERGEI N. BESPAMYATNYKH

(1 + ¢) times a distance to the closest neighbor). S. Kapoor and M. Smid [5] pre-
sented a data structure with a query time of O(log®~! nloglogn) and an amortized
update time of O(log’c ~!nloglogn), using O(ST’_—lnlog'c ~!n) space. The algorithm
uses Yao’s construction of regions [14]. .

There are several algorithms for the dynamic closest pair problem
[5,6,8,9,10,11,12]. C. Schwarz gives [9] a survey of the dynamic closest pair al-
gorithms. In [6,8,10] the problem is solved with O(y/nlogn) update time using
O(n) space. S. Kapoor and M. Smid [5] gave a data structures of size S(n)
which maintain the closest pair in U(n) amortized time per update, where for
k > 3, S(n) = O(n) and U(n) = O(log*'nloglogn); for k = 2, S(n) =
O(nlog n/(log log n)™) and U(n) = O(log nloglogn); for k = 2, S(n) = O(n) and
U(n) = O(log® n/(loglog n)™) (m is an arbitrary non-negative integer constant).

In Section 2 we briefly describe the orthant-based approach to R¥ and R%, post
office problem of Gabow, Bentley and Tarjan [3]. Also we show how to reduce the
number of regions in RX . In Section 3 we give the explicit construction of regions

~and reduce the (1 + ¢)-approximate neighbor problem to the dynamic problem of

range searching for maximum. In Section 4 we use the region construction from
Section 3 and reduce the dynamic closest pair problem to the dynamic problem of
range searching for maximum. The update algorithms (except the range searchmg)
are simple.

Chazelle’s data structure for range searching for maximum [2] allows to achieve
query and update times of O(logk‘H nloglogn), using O(n logk—2 n) space. Previ-
ously, no linear size data structure having polylogarithmic update time was known
for maintenance of a closest pair of .S in R2.

2. THE NEAREST NEIGHBOR PROBLEM FOR L, Lo

Gabow, Bentley and Tarjan [3] reduced the post office problem in R¥ (R.) to
orthant searching for minimum. We use this reduction in the dynamic version of
problem.

For L;-metric, the regions are the orthants. The number of regions is 2¥. Let g¢
be a query point and ¢q,...,gy« are the region neighbors of ¢ in the orthants. A
nearest neighbor of ¢ is one of the points ¢,..., go«. We use 2¥ data structures for
the region neighbor problems. To find a nearest neighbor in S of a query point ¢
we

1) find 2F region neighbors of ¢ and

2) choose a nearest neighbor which has minimal distance to q.

The insertion (resp. deletion) algorithm insert (resp. delete) a point into (resp.
from) 2 data structures.

Consider one of the regions at g. This region has form R = {z : a,(a:, -q) >
0,a; € {£1}}. For a point p in R, the distance between p and q is 6(p) — 6(q). 6(z)
is a derived distance function §(z) = Y a;z;. This allows a region neighbor to be
chosen as a point that minimizes §. A region neighbor of ¢ maximizes function —é.
Therefore we reduced the dynamic problem of finding a region neighbor in S to
the dynamic problem of range searching for maximum. Several data structures are

proposed for the dynamic problem of range searching in [2,7,13]. Chazelle’s data

THE REGION APPROACH FOR SOME DYNAMIC CLOSEST-POINT PROBLEMS

structure for range searching for maximum [2] allows to achieve query and update
times of O(log**! nloglogn), using O(nlogf~2n) space.

For Lo, -metric Gabow, Bentley and Tarjan [3) proposed 2*k! regions which cover
~ the space. For any region, the distances between the center of region (i.e. the origin)
and a point of the region is measured by a derived distance function. This means
that the intersection of the region and the unit sphere (i.e. k-cube with side 2)
lies in some face of the k-cube. In fact the condition of narrowness is no necessary.
We can partition each face of the unit sphere into (k — 1)! simplices [4]. Each
simplex corresponds to some region. Hence we obtain 2k - (k — 1)! = 2k! regions.
Furthermore we can use the connection between the regions and the triangulation of
the (k — 1)-cube [1]. This gives 2k7;_, regions where 7_, is the minimum number
of simplices to triangulate the (k — 1)-cube. For k = 2,3, 4,5 the number of regions
is 4,12, 40, 160 respectively.

2.1 Theorem. Let some algorithm solve the dynamic problem of range searching
for mazimum in U(k,n) update Q(k,n) query and P(k,n) preprocessing time, us-
ing S(k,n) space. The dynamic problem of finding Ly (L)-neighbor can be solved
in 28(U(k,n)+O(klogn)) (resp. 2kri_1(U(k, n)+O(klogn))) update 2¥(Q(k,n)+
O(klogn)) (resp. 2kmi_1(Q(k,n) + O(klogn))) query and 2*P(k,n) (resp.
2kte_1P(k,n)) preprocessing time, using 2¥S(k,n) (resp. 2kmi_,S(k,n)) space.

3. THE APPROXIMATE L,-NEIGHBOR PROBLEM

This Section applies the region approach to the approximate L;-neighbor prob-
lem. Let S be a set of n points in R¥ and let ¢ > 0 be a fixed constant. For
any point p € R¥, a point ¢ € S is a (1 + €)-approximate L;-neighbor of p if
di(p,q) < (1+ ¢)min{d;(p,r) : 7 € §}. We shall give an explicit construction of
regions that allows to reduce the (1 + ¢)-approximate L,-neighbor problem to the
range searching for maximum.

The main idea is that instead of L;-distances we use a distances which measured
by a derived distance function. This function is dependent on a region. A set of
regions is dependent on . :

Let B = {by,...,bt} be a basis of R¥. For any p € R¥, the region of B at p is
defined as

k
R(B,p)={p+>_Aibi : X > 0,b; € B}.

i=1
For this region we define a derived distance function § such that, for a point
T = Zle Aib; € R¥, §(z) = Z,{;I Ai||b:]|. For a point z = P+Zf=1 Ab; € R(B,p),

k . k
6(z) = 8(p+ 3 Nibi) = 6(p) + 3 Nillbill 2 6(p) + de(p, o).

Instead of the distance di(p,z) we use §(z) — 6(p). We call a region of B at p a
(1 + £)-narrow region if, for any point = € R(B, p)

di(p, z) < 6(z) = 6(p) < (1 + €)d:(p, 2).

77

78

SERGEI N. BESPAMYATNYKH

Let R(B,0) be a (1 + £)-narrow region. For a query point p, find a point q €
S N R(B,p) that minimizes §. ¢ is a (1 + £)-approximate region neighbor of p. A
(14 ¢)-approximate neighbor of p can be chosen among (1 + ¢)-approximate reglon
neighbors of p for regions which cover the space.

3.1 Theorem. For any ¢ > 0, there ezxists a family of (1 + ¢)-narrow regions at
origin such that the regions cover the space and the number of regions is O(=).

For a point z, let z’ denote W

3.2 Lemma. Let s = (sy,...,8) be a simplex in R¥ such that ||s;|| > 1 and
|si — sjl|| < €/4 where € € (0,1). Then the region corresponding to the simplez s is
(1 + €)-narrow.

3.3 Lemma. Let a,b are a points in R¥ and ||a|| > 1, [|b]| > 1, |ja = b]] < /2
where € € (0,1). Then ||a’ = b'|| < €.

3.4 Theorem. Let some algorithm solve the dynamic problem of range searching
for mazimum in U(k,n) update Q(k,n) query and P(k,n) preprocessing time, us-
ing S(k,n) space. The (1 + ¢)-approzimate L.-neighbor problem can be solved in
E—CE%%(U(k,n) + O(klogn)) wupdate ;cyf—%(Q(k,n) + O(klogn)) query and
fg%(P(k,n) + O(nlogn)) preprocessing time, using fg%S(k,n) space. c(k) de-
pends on the dimension k only.

Chazelle’s data structure for range searching for maximum [2] allows to achieve
query and update times of O(log®*! nlog log n), using O(n logt~2n) space.

4. THE MAINTENANCE OF A CLOSEST PAIR

This Section explores the region approach for the closest pair problem. A point
p € § is a nearest neighbor of ¢ if, for any r € 5, di(p, q) < di(g,r). For a points
p,q € S, we call the pair (p, q) a neighbor pair if p is a nearest neighbor of ¢ and
vice versa. It is clear that the closest pair of S is a neighbor pair of S. Instead
of L;-distances we use a distances which measured by a derived distance function.
The derived distance function is dependent on a region. We shall construct a finite
family of regions at common center (the origin). The regions cover the space R*.

Let p be a point in R¥, R be a region at p, 6 be a derived distance function, and
g be a point in S N R that minimizes §. We call ¢ a §-region neighbor of p. The
region neighbor of p minimizes d;(p,z), z € S N R. We call a pair (p,q) a region
neighbor pair of S if p is a region neighbor of ¢ and vice versa.

We store a set L of some pairs of points. For a point p € S and a region R at p,
the set L contains at most one pair (p,q), q € R.

Definition. Let p be a point in R¥ and R be a region at p and § is a derived
distance function. The region R is sa.ld to be md-narrow if, for any two points
z,y € R, 6(z) < é(y) implies d;(p,y) > di(z,y).

We use the construction of regions from the Section 3. The Lemma 4.1 gives
N = O(k) md-narrow regions.

4.1 Lemma. Let s = (s;,...,5;) be a simplez in R¥ such that ||s;|| > 1 and
llsi — ;]| < 1/4. Then the region corresponding to the simplezx s is md-narrow.

THE REGION APPROACH FOR SOME DYNAMIC CLOSEST-POINT PROBLEMS

We shall describe the update algorithms. Let a heap H store the distances of
the pairs of L. The heap item is the pair of the points. The key of the item (p, q) is
the L;-distance d;(p, q). The pair of points with minimal key is a closest pair of S.
~ With each point p € S, we store a list L(p) = {q : (p,q) € L}. The cardinality
of L(p) is at most Ni. With each point ¢ in L(p), we store a pointer to the item
(p, q) of the heap H.

Denote the regions by R(B;,0),...,R(Bn,,0). We store N, data structures
DS,,...,

DSy, . The data structure DS; corresponds to the region R(B;,0). The data
structure D.S; allows, for a query point p, to find a region neighbor ¢ in i-th region
R(B‘Hp) at p.

We need the following procedures. The procedure insert_pair(p, q)

1) insert the pair (p, ¢) into the heap H and

2) insert the points p and ¢ into L(q) and L(p) respectively.

The procedure delete_pair(p, q)

1) delete the pair (p, ¢) from the heap H and

2) delete the points p and ¢ from L(q) and L(p), respectively.

The insertion algorithm: Let p be a point to be inserted. Assume without
loss of generality that § does not contain p. Create a list L(p) (initially L(p) is
empty).

Insert p into DS; for ¢ = 1,..., N. For i = 1,..., N; perform the following:

1) Using the data structures D.S;, find the §-region neighbor g of pin SNR(B;, p).
If the é-region neighbor of p doesn’t exist then the processing of i-th region is
completed and go to the next .

2) Determine a region R(B;,q) at ¢ which contains p.

3) If L(q) does not contain a point in R(Bj;,q) then execute insert_pair(p, q) and
go to the next .

4) Let L(q) contain the point r € R(Bj,q). If di(p,q) > di(q,r) then go to the
next ¢. Otherwise execute delete_pair(q,r).

5) Execute insert_pair(p, q).

The deletion algorithm: Let p be a point to be deleted. Delete p from DJS;
for ¢ = 1,..., Ni. For each q € L(p) execute delete_pair(p,q). Delete the list L(p).
Fori=1,..., N; perform the following steps.

1) Using the data structures DSj, find the é-region neighbor g of pin SNR(B;, p).
If the d-region neighbor of p doesn’t exist then the processing of i-th region is
completed and go to the next . .

2) For j = 1,..., Ni perform the following steps.

2.1) Using the data structures D.S;, find the §-region neighbor r of ¢ in § N
R(Bj,q). If the é-region neighbor of ¢ doesn’t exist then the processing of j-th
region is completed and go to the next j.

2.2) Determine a region R(B;,r) at r which contains g.

2.3) Let L(r) contain the point ' € R(B;,r). If di(q,7) > di(r,r') then go to
the next j. Otherwise execute delete_pair(r,r').

2.4) If L(q) contains the point ¢’ € R(B;,q) then execute delete_pair(q,q').

2.5) Execute insert_pair(q,r).

We shall prove that the set L = {(p,q) : p € S,q € L(p)} always contains a
closest pair of 5.

79

80

SERGEI N. BESPAMYATNYKH

4.2 Lemma. The set L contains the neighbor pairs of S after each update.

4.3 Theorem. Let some algorithm solve the dynamic problem of range searching
for mazimum in U(k, n) update Q(k,n) query and P(k,n) preprocessing time, using
S(k,n) space. The dynamic problem of maintenance of a closest pair in R¥ can be
solved in O(U(k,n) + Q(k,n) + klog n) update and c(k)(P(k,n) + O(kn)) prepro-
cessing time, using c(k)(S(k,n))+ O(kn)) space. c(k) is a number of md-narrow
regions and depends on k only.

Chazelle’s data structure for range searching for maximum [2] allows to achieve
query and update times of O(log"*! nloglog n), using O(nlog®~2n) space. Previ-
ously, no linear size data structure having polylogarithmic update time was known
for maintenance of a closest pair of .S in R2.

Unfortunately the update algorithms does not maintain the set of the neighbor
pairs. We can increase the number of regions and modify the update algorithms
to provide any maintened pair would be a region neighbor pair (and the set of
maintened pairs would contain the neighbor pairs).

REFERENCES

-

. S. N. Bespamyatnykh, Constructing Minimum Spanning Trees an’;o and Triangulation of
the k-Cube, manuscript.
2. B. Chazelle, A Functional Approach to Data Structures and Its Use in Multidimensional
Searching, SIAM Journal on Computing 17 (1988), no. 3, 427-462.
3. H. N. Gabow, J. L. Bentley and R. E. Tarjan, Scaling and Related Technigues for Geometry
Problems, Proc. 16-th Annual ACM Symposium on Theory of Computing (1984), 135-143.
4. J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading, MA (1961).
5. S. Kapoor and M. Smid, New Technigues for Ezact and Approzimate Dynamic Closest-Point
Problems, manuscript.
6. H.-P. Lenhof and M. Smid, Enumerating the k Closest Pair Optimally, Proc. 33rd Ann. [EEE
Symp. Found. Comput. Sci. (1992), 380-386.
7. G. S. Lueker and D. E. Willard, A Data Structure for Dynamic Range Queries, Information
Processing Letters (1982), no. 15, 209-213.
8. J.S. Salowe, Enumerating Interdistances in Space, Internat. J. Comput. Geom. Appl. (1992),
no. 2, 49-59.
9. C. Schwarz, Data Structures and Algorithms for the Dynamic Closest Pair Problem, Ph.D.
Thesis, Universitit des Saarbriicken (1993).
10. M. Smid, Maintaining the Minimal Distance of a Point Set in Less Than Linear Time,
Algorithms Rev. (1991), no. 2, 33-44.
11. M. Smid, Maintaining the Minimal Distance of a Point Set in Polylogarithmic Time, Discrete
& Computational Geometry (1992), no. 7, 415-431.
12. K. L. Supowit, New Techniques for Some Dynamic Closest-Point and Farthest-Point Prob-
lems, Proc. 1-st Annual ACM-SIAM Symposium on Discrete Algorithms (1990), 84-90.
13. D. E. Willard, Multidimensional Search Trees That Provide New Type of Memory Reductions,
Journal of the Association for Computing Machinery 34 (1987), no. 4, 846-858.
14. A. C. Yao, On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related
Problems, SIAM Journal on Computing (1982), no. 4, 721-736.

URAL STATE UNIVERSITY
DEPARTMENT OF MATHEMATICS AND MECHANICS
51 LENIN ST.
EKATERINBURG 620083
RUSSIA
E-MAIL: BSN@DATAKRAT.URGU.E-BURG.SU

