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Positive and Negative Results on the Floodlight Problem (Extended Abstract)
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Abstract

We consider three problems about the illumination
of planar regions with floodlights of prescribed an-
gles.

Problem 1 is the decision problem: given a
wedge W of angle § < m, n points py,---,p, in
the plane and n angles a;,- -+, @, summing up to
at least 6, decide whether W can be illuminated
by floodlights of angles a1, -, a, placed in some
order at the points pi,---,p, and rotated appro-
priately. We show that this problem is in NP.

Problem 2 arises when the n points are in the
complementary wedge of W. Bose et al. [3] have
given an O(nlogn) algorithm for this case. We
give a matching lower bound.

The third problem involves the illumination of
the whole plane. The algorithm of Bose et al. [3]
uses an O(nlogn) tripartitioning algorithm to re-
duce problem 3 to problem 2. We give a linear time
tripartitioning algorithm using a prune-and-search
technique.

1 Introduction

[lumination problems have a distinguished his-
tory in Combinatorial and Computational Geom-
etry, for example in the area of Art Gallery the-
orems and algorithms (see O’Rourke [6]). Tradi-
tionally, the sources of illumination are light bulbs,
sending rays in every direction. The goal is to il-
luminate a given region. Floodlights are sources of
light which are constrained to shine within some
specified cone. Illumination by floodlights has only
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recently received some attention (Bose et al. [3],
Czyzowicz et al. [4]). The 2-dimensional Floodlight
Problem, as introduced in [3] assumes that n sites
(planar points) are given, together with n planar
angles meant to describe the span of n floodlights.
The problem asks to assign one floodlight to each
point and then to orient them by rotation in such
a way that a given target is illuminated.

In this paper we investigate three prob-
lems which arise in connection with this general
paradigm. The target will be a (bounded or un-
bounded) planar convex polygonal region W. Spe-
cial cases include a wedge or the whole plane. Note
that unlike the Art Gallery problems, here the rays
of light meet no obstacles.

The decision problem is: given n points
D1, +,Pn in the plane and n angles aj,---, ay, is
it possible to place n floodlights of sizes oy, -, ay,
at the given points, each point getting some flood-
light, so that the region W is illuminated? We will
study the special case when W is an unbounded
convex polygonal region with the angle between the
two infinite sides equal to 4. In particular W can
be a wedge of angle §. Note that § < 7. Showing
that the general decision problem is in NP is not
immediate, since the set of possible solutions is not
even countable. We will get this result by showing
that every solution is equivalent to a solution in a
standard form. The set of standard solutions has
size (n!)? and the verification can be achieved in
polynomial time. A particular case is of further in-
terest. Define a tight floodlight problem to be an in-
stance where 37—, a; = 6. In this case any solution
to the tight problem is in standard form. The NP
characterization of the tight problem involves two
existential quantifiers, one going over permutations
of points and one over permutations of angles. If we
fix one of the permutations, the resulting floodlight
problem admits a very elegant characterization us-
ing duality. As a by-product, we can characterize -
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the case when all the floodlights are identical (i.e.,
all the angles are the same) and point to a special
case, with points in “convex” position, when the
solution is unique (this result is not included in the
present paper). We know of no polynomial time
algorithm for any of these problems, nor whether
they are NP-complete.

The second problem deals with the case when
W is a wedge of size 8 < 7, the sum of the angles
is at least # and all the points are in the comple-
mentary wedge. Then there is always at least one
solution. Bose et al. [3] have given an O(nlogn)
algorithm for this problem. We prove a matching
lower bound by reduction to sorting.

The third problem arises in connection with il-
luminating the whole plane with angles summing
up to at least 2w, all of which are less than 7. Bose
et al. [3] solve this problem by reducing it to the
previous one. The reduction involves finding a claw
of n points: a partitioning of the n points into three
wedges determined by three rays originating from
the same vertex, of prescribed angles, and contain-
ing a prescribed number of points each. Bose et al.
(3] give an O(nlogn) claw-finding algorithm. Us-
ing a prune-and-search technique we improve this
to a linear time algorithm.

2 The Decision problem

Let W be a planar unbounded convex polygonal re-
gion which shall henceforth be called a generalized
wedge. A special case is when W is a wedge, i.e.,
the set of points above a line [; and below line I;. A
generalized wedge W is contained in the wedge W’
formed by its two infinite sides. Let 8 be the angle
of the wedge W’ containing W. We call 4 the angle
of the generalized wedge W. Note that because of
convexity 6 < .

Let’s fix some notation. Denote the two rays
(half-lines) bounding W by ao and by and their
intersection by po. Without loss of generality let’s
assume that by is above ag and the wedge is to the
left of its vertex po. Let af, be the line supporting
ao and bj the line supporting bo. Let W; be the
complementary wedge of W’ and W, and W3 the
other two regions defined by the lines ag and bg.
See Fig.1.

~

Figure 1: Generalized wedge W and the wedge W’
containing it.

Let pq,- -, p, be n planar points and oy, - - -, @y,
0 < a; < 7, be n angles. We want to get a match-
ing between angles and points so that the region W
is entirely illuminated. Note that we assume that
there are no obstacles (such as walls) bounding the
region W and that the floodlights can be rotated
in any way around the points to which they are as-
signed. With these conventions, a solution to the
floodlight problem consists of (1) a permutation o
such that a floodlight of angle a,, is assigned to
point p;, and (2) an appropriate angle of rotation
for each floodlight.

The general decision problem is not even known
to be in NP. Indeed, “guessing” a solution means
not only guessing the permutation, but also the ori-
entation of the floodlights around the points, and
this is not even a countable set.

A necessary condition for the existence of a so-
lution is given by the following lemma.

Lemma 1 If Y i ,a; < 0 then for any points
P1,**,pn and any generalized wedge W of angle
0 the floodlight problem has no solution.

Proof:
Omitted. .

The lemma shows that the first interesting case
to study is when we have equality. We define the



tight floodlight problem to be an instance of the
floodlight problem for which >"i-; a; = 8. It turns
out that any solution for the tight floodlight prob-
lem has a nice combinatorial characterization.

Proposition 1 Consider an instance of the tight
floodlight problem for a generalized wedge W con-
tained in a wedge W'. W' is defined by rays ag
and by intersecting at point pg, with by above ag
and angle 0 between them. Then every solution is
characterized by an ordered set of n pairs of rays
(aiyb;), i =1,...,n (each pair defines a floodlight,
with a; above b;) satisfying the following conditions:

e a;Nb; =py, t=1,---,n for some permuta-
tion o of 1,---,n. The corresponding angles
La; P, b; = oy, give a permutation T.

e a; is parallel to b;_q, i = 0,1,---,n taken
mod(n + 1).

e p; above b;_y and below a;4y, 1 = 0,1,---,n,
taken mod(n + 1).

Figure 2: A solution for a tight floodlight problem
when W is a wedge (o is taken to be the identity).

Proof:
Induction on n. Omitted. .

A solution to a tight floodlight problem induces
a permutation o of the points py,---,p,, and this
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gives the ordering in which floodlights placed at
these points cover W so that the next floodlight in
this ordering has the “upper” side parallel to the
“lower” side of the previously placed floodlight. To
keep the notation simple, the example in fig. 2
assumes that the permutation o of points is the
identity.

Corollary 1 The tight floodlight problem is in NP.

Proof:

A nondeterministic algorithm will guess the
permutation of points and angles. The verification
part can obviously be achieved in polynomial time.

In Fig. 2 p3 is in the complementary wedge.
This wedge may not be empty if a solution exists.

Corollary 2 If there ezists a solution to a tight
floodlight problem, then there ezists at least one
point in the complementary wedge.

Proof:

Assume there is no point in the complementary
wedge, but only in W and W3 (see Fig. 1). Con-
sider the floodlights placed at points in W,. Their
lower sides b; intersect only the regions W, W7 and
W, so no point in W3 can be above these sides.
But this contradicts the characterization of the so-
lution given in Proposition 1. ||

We can generalize the construction given in
Proposition 1 to get a standard representation for a
solution of any general floodlight decision problem;
the proof is left for the full paper.

Corollary 3 The general floodlight decision prob-
lem is in NP.

3 A Lower Bound for the Re-
stricted Wedge Illumination
Problem

Define the Restricted Wedge Illumination Problem
as the problem of finding a solution for the tight



90

floodlight problem in the particular case when the
target is a wedge and the points are in the com-

plementary wedge. Bose et al. [3] gave a simple.

O(nlogn) time algorithm. We show a matching
lower bound.

Proposition 2 Any algorithm for the restricted
wedge illumination problem takes at least 2(nlogn)
time.

Proof: We show that if the restricted wedge illu-
mination problem with equal angles can be solved
in o(nlogn) time, then we can sort an array of n
numbers in o(nlogn) time.

The reduction is based on Proposition 1 and
one additional fact. Given an array of n num-
bers ay,---,a, to be sorted, find M = maz a; + 1,
m = min a; — 1 and compute b; = (a; — m)/(M —
m). Now with these numbers define the points

P1,°*,Pn With p; = (b;,4/1 — b?). These points are
on the unit circle in the (open) first quadrant and
their z-coordinates are in the same order as the
inputs ay,---,a,. This construction takes linear
time. We will associate an instance of a restricted
wedge illumination problem. At each p; we set a
floodlight of angle -~ and we will illuminate the
third quadrant with them. The key observation is
that the problem admits a unique solution, i.e. a
unique permutation o of the n points. We leave
the proof of this fact for the full paper. From the
solution we can read off the permutation of a; in

linear timel

4 Tripartitioning in The Plane

Bose et al. [3] have given an O(nlogn) algorithm
for constructing a solution for the plane illumina-
tion problem: given n planar points and n angles
summing to at least 27 and each less than 7, find a
matching between the points and floodlights of the
given angles so that the whole plane is illuminated.
The solution is based on an O(nlogn) time reduc-
tion to the restricted wedge illumination problem
discussed in the previous section via a claw con-
struction, or tripartitioning of a set of points in the
plane. Here we will improve the tripartitioning to

Figure 3: A Tripartitioning Claw

a linear time algorithm. Tripartitioning is of inde-
pendent interest. In particular, the same technique
that we use for tripartitioning can be adapted to a
problem of Avis and ElGindy [1] for tripartitioning
a set of points contained in a triangle.

The inputs to the tripartitioning problem are n
points py, ..., pn, a partition of 27 into three angles
01, 6,5, 03, 6; < w, and a partition of n by positive
integers ki, k2,k3. The desired output is a claw
- namely a point P from which rays py, py, p3 em-
anate, and 6, is the angle between p; and p, (wedge
Wy), 02 the angle between pg and p3 (wedge W),
and 63 the angle between p3 and p; (wedge W3).
The claw must have the property that k; points lie
in W; (see Figure 3).

Proposition 3 Given n points in the plane in gen-
eral position, the complezity of tripartitioning them

is O(n).

Proof: The lower bound is obvious. The proof
rests on the following algorithm which we show to
be linear.

We’ll use a prune-and-search technique, com-
bined with the fast selection algorithm of Blum et
al. [2]. Our algorithm will work in stages. In each
stage, in linear time, we will discard from further
consideration a fixed fraction of the points that be-
gan the stage. We seek a tripartitioning of the re-
maining points so that, when the discarded points
are added, we have the tripartitioning we originally
sought.

Let S = {p1,...,pn} denote the points. Con-
sider vertically directed lines Ly and L,, incident
with no points of S, and L; has k; points on its



B,

I
i
I
1
|
1
1
1
1

Figure 4: Finding a Tripartitioning

left and Ly has k3 points on its right (see Figure
4). Now

1. Take a point By on Ly such that the ray
p2 (obtained by rotating L, counterclockwise
through B; by 6, radians), has k; points of
S above it, but is within vertical distance ¢
(small) from the nearest point of S.

2. Take a point By on L, such that the ray ps
(obtained by rotating L2 clockwise through
B; by 63 radians), has k3 points of S above
it, but is within vertical distance ¢ from the
nearest point of §. '

3. Take a point Ay on Ly such that the ray A;
(obtained by rotating L, clockwise through
A; by 65 radians), has k3 points of 5 above
it, and k, below.

4. Take a point Az on Ly such that the ray
A2 (obtained by rotating L2 counterclockwise
through A, by 6, radians), has k; points of
S above it, and k; below. ‘

Without loss of generality we only consider the
case when A; is above B;. Otherwise, since no
point of S is below p2, we could move B; and p;
down to A;. The rays p, and A; and the ray p;
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Figure 5: Prune and Search

pointing up along L, from A; will form a tripar-
titioning claw at A;. Similarly we only need to
consider the case when A, is above B,.

The configuration in Figure 4 helps prove the
existence of a tripartitioning. There are k; points
of S between lines L, and L;. We will move L; to
the right, crossing these points one at a time (as-
sume no pair of points of S is on a line parallel to
Ly, p2, or p3). The regions below p; (no points)
and Aq (k2 points) and below A; (k; points) and p3
(no points) are degenerate wedges. As we move L,
to the right, p2 and Ay will meet to form the wedge
W, as follows. As L; crosses point P, we will move
A1 down and p; up - as necessary - to maintain k;
points above p; and k3 points above A;. For exam-
pleif P had been above A, A\; would move down to
cross one point of S; otherwise no move. If P is now
above ps on the left of Ly, p; moves up one point;
otherwise no move. At some step in this process
we reach the configuration shown in Figure 4 where
there is now ezactly one point between L; and L,.
It is now easy to see that after L, crosses this point,
the rays A; and p2 may be moved - if necessary -
to restore k; points above p, (this is wedge Wy of
the tripartitioning) and k3 points above A; (this is
wedge W3) and without crossing any other points,
they may be brought together; i.e., A; moves to B,
forming wedge W, with k points.

This argument also implies an O(nlogn) algo-
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rithm based on knowing the sorted order of the
points in each of the three directions orthogonal to
L1, to p2, and to p3. Once this is known, each of
the “moves” described above brings a new point
below p; and can be performed in constant time.
To improve to O(n), we use linear-time selection
together with “prune-and-search”, as follows.

Among the k2 points between L; and L, we se-
lect a;, the j%th closest point to Ly, j = 1,...,9,
in linear time. Just to the left of each a; we con-
struct the directed vertical line /; and from it, rays
o; parallel to p; and 7; parallel to p3; o; has k;
points of S above it and 7; has k3. Note also that
o;j has j % points below it. All 9 configurations are
degenerate claws, as in Figure 4, and may be con-
structed in linear time. Let lg = L and l19 = L.
Then there is an adjacent pair /;,/;+1,5 =0,...,9,
where the ray o; is below 7; but ;. is above ;44
(see Figure 5).

We are able to delete a fixed fraction of the k; +
k2 + k3 points because: (1) there are %’—"02- points be-
low o; or 7j4+1 and these points must be in W in the
final partitioning; (2) there are min(0, k1 — k2/10)
points above o; - and furthest from it in orthog-
onal distance - which must be in W; in the final
partitioning; (3) there are min(0, k3—k2/10) points
above 7;;1 - and furthest from it - which must be
in W3. We may delete these points and continue
searching between [/; and [/;4, for the tripartition-
ing of the remaining points that agrees with the
one we seek JJj

Remarks: (1) The pruning could also be done
by selecting the median point between L; and Lo,
discarding the appropriate half (k2/2 points known
to be in W3) and continuing the search in the rest.
A similar step is then done in the direction defined
by p2 and then again in the direction defined by p3
(see Figure 4). After these three linear time steps,
half the points remain to be assigned to their final
wedges.

(2) The problem of Avis and ElGindy [1] is a
simpler case of the following: given n points in a
triangle T, construct a point P € T so that the
rays from P to the vertices of T form subtriangles
containing prescribed numbers, ki, k2, n — k1 —
k, of points of T. Our prune-and-search can be
performed in a radial fashion and tripartition the
triangle in linear time.
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