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Abstract

Let A = {C1,C3,...,Cr} be an arrangement
of Jordan curves in the plane lying in general
position, i.e., every curve properly intersects at
least one other curve, no two curves touch each
other and no three meet at a common inter-
section point. The Jordan-curve arrangement
graph of A has as its vertices the intersection
points of the curves in A, and two vertices are
connected by an edge if their corresponding in-
tersection points are adjacent on some curve in
- A. We further assume A is such that the result-
ing graph has no multiple edges. Under these
conditions it is shown that determining whether
Jordan-curve arrangement graphs are Hamilto-
nian is NP-complete.

1 Introduction

A Hamiltonian circuit in a graph is a circuit
which passes through every vertex of the graph
exactly once. The Hamiltonian circuit problem
asks whether there exists at least one Hamilto-
nian circuit in a given graph. There have been
at least three approaches taken in the past to-
wards the study of Hamiltonian circuits. In

one approach sufficient conditions are sought
for which graphs are Hamiltonian. For ex-
ample, it is known that all 4-connected tri-
angulated graphs [Wh31], 4-connected planar
graphs [Tu56], [Ch85] and 1-sail line arrange-
ment graphs [EGT92] are Hamiltonian. Also,
the visibility graphs of sets of line segments
with the property that the line segments are
of unit length whose endpoints have integer co-
ordinates, are Hamiltonian [OR91]. A related
computational question concerns how fast we
can find a Hamiltonian circuit in a Hamiltonian
graph. For any 4-connected planar graph G
with n vertices, a Hamiltonian circuit in G can
be found in O(n3) time [Go82). If only the ver-
tices where a turn is made need be reported (a
streamlined Hamiltonian circuit) then a Hamil-
tonian circuit for 1-sail line arrangement graphs
can be found in ©(nlogn) time, where n is the
number of lines in the arrangement [EGT93].
A second approach is to find restricted classes
of graphs for which we can determine in poly-
nomial time whether or not instances of such
graphs admit a Hamiltonian circuit. For exam-
ple if each line segment of a set of n disjoint
line segments in the plane has at least one of
its end points on the convex hull of the set, it
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can be determined in O(nlogn) time whether
the set admits a Hamiltonian circuit through its
endpoints such that it is a simple polygon and
uses every line segment exactly once [RIT90].
The third approach to the Hamiltonian cir-
cuit problem has been to search for restricted
classes of graphs for which the problem is NP-
complete. For example, the Hamiltonian cir-
cuit problems for general graphs [Ka72], for 3-
regular 3-connected planar graphs [GJT76], and
for 3-regular bipartite planar graphs [ANS80]
are known to be NP-complete. Also, in the line
segment problem discussed above, if the convex
hull restriction is removed and line segments are
allowed to touch at their end points it is NP-
complete to determine if they admit a simple
Hamiltonian circuit [Ra87]. One of the results
on a related problem is the NP-completeness of
the edge Hamiltonian path problem for bipar-
tite graphs [LW93]. ‘

Recently several different classes of arrange-
ment graphs have been introduced [EGT92].
For example, an arrangement of n lines in gen-
eral position (no two parallel and no three
concurrent) defines a set of intersection points
joined by edges. The graph whose vertices are
the intersection points and whose edges are the
segments of the lines between adjacent intersec-
tion points, is called a line-arrangement graph.
Hazel Everett [EGT93] has shown that not
all line-arrangement graphs are Hamiltonian.
On the other hand the great-circle-arrangement
graph on the sphere (obtained in a similar man-
ner from a set of great circles on the sphere in
general position) has been recently shown to be
Hamiltonian by Bruce Reed [Re]. In this note
we establish the NP-completeness of the Hamil-
tonian circuit problem for a new class of graphs
we call Jordan-curve arrangement graphs with
no multi-edges. This class is properly con-
tained in the class of 4-regular graphs. There-
fore our result is strictly stronger than the NP-
completeness result for 4-regular planar graphs.

2 Definitions and Results

Let C; and C; denote two Jordan curves. Let
A = {C1,C,,...,Cr} be an arrangement of
Jordan curves. The set of intersection points of
C; and Cj is denoted by I(C;,Cj), and the set
of intersection points has measure zero. In this
paper, we assume that (i) no two curves touch
each other (thus, |I(C;, Cj)| > 1 if C; properly
intersects C;) and (ii) no three curves are con-
current, i.e., share a common intersection point.
Let V(A) = {v|v € I(C;,Cj;) such that C;,C; €
A}. The Jordan-curve arrangement graph of an
arrangement A is the graph G, = (V,, E;) such
that (i) V, = V(A) and (ii) edges in E, are
formed by curves of A (see Fig. 1). Note that
a Jordan-curve arrangement graph may contain
multi-edges.

Theorem 1. The Hamiltonian circuit
problem for Jordan-curve arrangement graphs

with no multi-edges is NP-complete.

Remark. Since every Jordan-curve ar-
rangement graph is a 4-regular planar graph,
the Hamiltonian circuit problem for 4-regular
planar graphs is also NP-complete. The class
of Jordan-curve arrangement graphs with no
multi-edges is properly contained in the class
of 4-regular planar graphs, i.e., there exist 4-
regular planar graphs -G with no multi-edges
such that G cannot be formed by any arrange-
ment of Jordan curves (see Fig. 2).

Proof of Theorem 1. Since the Hamil-
tonian circuit problem for general graphs is in
NP [Ka72], the problem for Jordan-curve ar-
rangement graphs with no multi-edges is also
in NP. It is known that the Hamiltonian cir-
cuit problem for 3-regular planar graphs with
no multi-edges is NP-complete [GIT76]. We
reduce each 3-regular planar graph G with
no multi-edges to a Jordan-curve arrangement
graph G, with no multi-edges such that G is
Hamiltonian if and only if G, is Hamiltonian.
The overview of the proof is as follows. Starting
with G, (i) we construct 4-regular planar graph



G with multi-edges and (ii) we then construct
4-regular planar graph G, with no multi-edges.
(iii) We prove that G is Hamiltonian if and only
if G, is Hamiltonian (Lemma 1), and (iv) we
then prove that G, is a Jordan-curve arrange-
ment graph (Lemma 2).

Construction of G;: We first replace each
edge of G by a pair of multi-edges (see Fig. 3).
We then replace each vertex v by three vertices
(say vz, vy, and v;) and three edges, (vz,vy),
(vy,v;), and (vz,vz). We call the subgraph
induced by these three edges a triangle. We
denote the resulting graph by G, = (W, Ey).
By construction, G is a 4-regular planar graph
with multi-edges. Furthermore, G; can be con-
structed from G in polynomial time.

Construction of G,: The basic idea is to
add four vertices and four edges to each pair
of multi-edges (see Figs. 4 and 5). We first find
a vertex subset S C V; such that (i) exactly one
vertex of each pair of multi-edges is in S and
(ii) at least one vertex of each triangle is in S.
(We will show how to find such an S later.) Sup-
pose that a vertex a of Gy is in S (see Fig. 4-(a)).
Let ey, e, €3, and e4 be the edges incident to a
in clockwise order. For 1 < ¢ < 4, we “divide”
edge e; into two edges by adding a new vertex a;
on e; (see Fig. 4-(b)). We then add four edges
(a1, a2), (a2,a3), (as,aq), and (ag,a;). We call
a subgraph induced by these four edges a circle.
By applying the above procedure to each vertex
in §, we obtain G, (see Fig. 5-(b)). Now G, has
no multi-edges.

It remains to show how to construct S C V;
in polynomial time. We first construct a vertex
set Sy C S such that (i) at most one vertex of
each pair of multi-edges is in S; and (ii) ezactly
one vertex of each triangle is in S;. S can be ob-
tained by finding pairs of multi-edges such that
both vertices of each of the pairs are not in S,
and by adding one arbitrary vertex of each such
pair to Sy. The construction of S; is as follows.
We construct a directed subgraph D = (V, Ep)
in the original graph G = (V, E) such that all
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of D’s vertices have out-degree one (see Fig. 5-
(a)). Recall that vertices and edges in G were
replaced by triangles and pairs of multi-edges
in Gy, respectively (see Fig. 3-(b)). Each ver-
tex vy of Gy is in S; if and only if there ex-
ists a directed edge (v,z) in Ep (see Figs. 3-(b)
and 5-(a)). D = (V,Ep) can be constructed
as follows. We first find an undirected span-
ning tree, say T = (V, ET), in G. We choose an
arbitrary vertex, say r, among T’s leaves. We
regard 7 as the new root of T. We then con-
struct a directed spanning tree rooted at r by
adding direction information to 7. Note that
every vertex of T, except for root r, now has
outdegree exactly one. (r has in-degree one and
out-degree zero.) Furthermore, we find an undi-
rected edge (r,z) € E such that (z,r) ¢ Er. By
adding directed edge (r,z) to ET, we obtain Ep
(and hence we obtain D = (V, Ep)).

Lemma 1. G is Hamiltonian if and only if
G, is Hamiltonian.

Proof. (<) Let v be a vertex in the 3-
regular planar graph G (See Fig. 3-(a)). By
the above reduction, vertex v is reduced into
a subgraph, say S,, composed of one triangle
and at least one circle (see Fig. 6). It should
be noted that removing three vertices, vy, vs,
and v3 (shown in Fig. 6), from G, decomposes
G, into at least two connected components, one
of which corresponds to v in G. (Intuitively,
v1, V2, and v3 in Fig. 6 correspond to the-three
edges (v,z), (v,y), and (v,z) in Fig. 3-(a), re-
spectively.) If there is a Hamiltonian circuit in
G, which passes through vertices in S, from v,
to v, then we can construct the corresponding
Hamiltonian circuit in G which passes through
v from (z,v) to (v,y). Therefore, if there is
a Hamiltonian circuit in G,, then there is a
Hamiltonian circuit in G.

(=) Foreach of the possible cases shown in
Fig. 6, S, has.a Hamiltonian path between ev-
ery two of the three vertices, vy, v;, and v3 (see
Fig. 7, symmetric cases are omitted). Thus, if
there is a Hamiltonian circuit in G, then we
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can construct the corresponding Hamiltonian
circuit in G,. O

Lemma 2. G, is a Jordan-curve arrange-
ment graph.

Proof. Since G, was constructed by
adding circles to G, G, is a Jordan-curve ar-
rangement graph if Gy is a Jordan-curve ar-
rangement graph. In the following, we show G,
is a Jordan-curve arrangement graph. Consider
the following edge-coloring algorithm:

(1) Initially, all edges have no colors.

(2) Choose an arbitrary edge with no color, and
color it with a new color.

(3) Find an edge, say e;, with no color which
satisfies the following condition: There ex-
ist three edges e;,e3 and e4 such that
e1,e2,e3, and ey are incident to a vertex
in clockwise order and that e3 has already
been colored. (See Fig. 4-(b).)

(4) Color e; with the same color as e3.

(5) Repeat (3) and (4) until there is no edge e;
satisfying the above condition.

(6) Repeat (2)-(5) until all edges are colored.

By applying this algorithm to G;, we obtain

subgraphs each of which consists of edges hav-

ing the same color. We now show that these
subgraphs are 2-regular graphs.

Consider an arbitrary face of G (see Fig. 8-
(a)). By the transformation from G to Gi,
(i) each vertex of G, which is the boundary point
of three faces, is replaced by three edges of a tri-
angle of Gy, and (ii) each edge of G, which is
the boundary between two faces, is replaced by
a pair of multi-edges (see Fig. 8-(b)). Thus, the
edges colored by a single color form a 2-regular
planar subgraph which corresponds to a face of
G. Hence, Gy can be formed by an arrangement
of Jordan curves. a

Example. We give an example of arrange-
ments of Jordan curves whose graphs are not
Hamiltonian (see Fig. 9-(c)). The 3-regular pla-
nar graph shown in Fig. 9-(a) is not Hamil-
tonian, since it is not 1-tough [Ch85], i.e., we

can decompose it into three connected com-
ponents by removing two vertices. This non-
Hamiltonian graph can be reduced to the 4-
regular planar graph with no multi-edges shown
in Fig. 9-(b). This 4-regular graph is also non-
Hamiltonian, since removing two subgraphs
which correspond to the above two vertices de-
composes the 4-regular graph into three con-
nected components. (Although there is a
Hamiltonian path in each of the three connected
components, no Hamiltonian circuit can be con-
structed by connecting those three Hamiltonian
paths.) Therefore, the arrangement of Jordan
curves shown in Fig. 9-(c) is non-Hamiltonian.
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(2) (b)

Fig. 1 (a) Arrangement of three Jordan curves

(b) Jordan-curve arrangement graph

Fig. 2 A graph that cannot be formed by
any arrangement of Jordan curves

(2) (b)

Fig. 3 (a) Vertices of G (b) Triangles of G,

. U

(b)
Fig. 4 (a) Four edges incident to vertex a
in G1 (b) Circle in G,

@ (b)
Fig. 5 (a) Directed subgraph D in G

(b) Circles of G,
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v,
v, v,
Us
Fig. 6 Three possible cases
i X
Fig. 8 (a) Faceof G (b) Corresponding 2-regular subgraph in G,

(a) 3-regular graph (b) 4-regular graph with no multi-edges (c) Arrangement of Jordan curves
Fig. 9 Non-Hamiltonian planar graphs and a non-Hamiltonian arrangement



