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1 Introduction

We propose a new variant of the shortest path problem among obstacles in the plane.

Shortest path problem in a polygonal domain in the presence of forbidden vertices: Giiven a polvgonal
domain P, a source point s, a destination point ¢, and a subset F of the polygonal domain vertices.
find the shortest path from s to ¢ such that it
1. Does not cross the polygonal domain
2. Turns only on boundary vertices
3. Never turns on a vertex of the set F.

More generally, find the collection of such paths from s to all vertices of the polveonal domain.

For F = {), the problem is the ordinary shortest path problem in the plane. For a survey see [7].
In that case, (F = ) restriction 2 is immaterial since it is well known that shortest paths turn only on
obstacle vertices.

This problem is motivated by a communication problem in which stations are located at obstacle
vertices. A source point s is to broadcast messages to all (or some) stations via straight-line paths.
Suppose some of the stations are faulty and thus, can not be used to receive or relay messages. The goal
is to establish shortest communication paths from s to all non-faulty stations such that no path from s
passes through a faulty station.

The shortest path problem in the presence of forbidden vertices can be solved using the visibility graph
of the vertices in the polygonal domain. Since paths are restricted to turn only at polvgonal vertices
the visibility graph contains all feasible paths. Note that unlike the ordinary shortest path problem. a
feasible path from s to ¢t or some other vertex may not exist. An algorithm to solve the problem is the
following.

e Construct the visibility graph VG of the polygonal domain including point s (see [2] for an ontput
sensitive visibility graph algorithm). Assign the Euclidean distance as weights on edges.

o Apply e.g., Dijkstra’s shortest path algorithm on VG starting at node s with the following modi-
fication: When a node in F is to be scanned (has the minimum label) delete all edges incident to
it. _

o Report the collection of paths found by the algorithm.
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The time complexity of the above algorithm depends on the size and the time to construct the
visibility graph, and therefore is quadratic in the number of obstacle vertices. For the ordinary case
(F = 0), a recent result by Mitchell [6] gives a subquadratic (O(n/3%¢)) time and space algorithm nsing
the continuous Dijkstra paradigm (n is the number of vertices of the polygonal domain). For F' # (. it
is an open question whether a solution more efficient than the above can be found.

Consider the case where the polygonal domain is a simple polygon P of n vertices. The ordinary
shortest path problem can be solved in O(n) time [5, 3, 4]. In the presence of “forbidden” vertices the
above algorithm will give a solution in quadratic time. In this abstract we study the geometric properties
of the problem in order to give a geometric solution which avoids constructing the whole visibility graph
and to further explore the connection between the visibility graph and path planning. We briefly give
the main ideas for an O(knlogn) time algorithm where k is the number of forbidden vertices.

2 Definitions.

Let P be a simple polygon, s be a source point in the interior of P and F = {fi, fa,.... fu} be the set of
forbidden vertices of P. Let ¢ be a point in P. The shortest path from s to t which satisfies conditions
1,2 and 3 above is referred to as the shortest alternative path from s to t and is denoted by a(s.t). The
length of a(s,t) is called the alternative distance. The shortest alternative path tree is the collection of
shortest alternative paths from s to all vertices of P, and is denoted by Q(s, P). For two points ..y in
P, the last vertex (or z if there is none) before y on a(z,y) is called the alternative anchor of y wirh
respect to z.

A problem arising in the presence of forbidden vertices is that a(s,t) need not be monotone. It mayv
even self intersect (figure 1(a)). Moreover, unlike the ordinary case, given a polygon diagonal 7775 a(s. )
and o(s, v2), do not provide enough information to find a(s, z) for a point x on 5773 or o find a(s. y) for
a vertex y in P(7173) (figure 1(b)).

We denote the ordinary shortest path from s to ¢ by m(s,t), and the ordinary shortest path tree by
T(s, P). The set of all descendants of a vertex v in T(s, P) is denoted by D(v). The length of m(s.1) is
the geodesic distance of t from s. The ordinary anchor of a point y with respect to a point .« is the last
vertex (or z if there is none) before y on 7(z,y). It is well known (see for example [3]) that T(s. P) is
a planar tree rooted at s with straight line edges. Each of its edges is either a side or an interior chord
of P. Q(s, P) on the other hand, is not necessarily planar. It consists of the part of T(s. P) derived by
deleting the subtrees rooted at f; € F union the collection of the shortest alternative paths from s to
D(f:), fi € F.

The extension segment of diagonal ZF is the maximal initial section of a half-line co-linear with 73
extending from y in the direction of increasing distance from z until it hits the boundary of P. For two
vertices z,y we define the eztension segment emanating from y with respect to x, to be the extension
segment of 77 where v is the anchor of y with respect to z. See figure 2.

Polygon vertices, unless otherwise noted, are ordered according to the clockwise order induced by the
polygon boundary. For a subset X of polygon vertices the polygon induced by X, P(.X). is the polvgon
formed by sequentially connecting the vertices in X in the order they appear on the polveon boundary.
Note that P(X) is not necessarily a subpolygon of P. A polygon diagonal d = T partitions P into two
parts, one of which contains s. We denote the part of P not containing s by P(T%) ( see figure 2). Two
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polygon vertices u, v, are f;-visible if their visibility is not blocked by the forbidden vertex f;. Note that

vertices u, v are not necessarily visible. For example, in figure 2 u5 and v, are f-visible.

3 The case of a simple polygon with exactly one “forbidden” vertex.

Let F = {f}. We assume, without loss of generality, that 7 (s,u) turns left on f for u € D(f).

Let Uy be the set of vertices visible from f in D(f). Let V; be the set of vertices visible from f between
the extension segments of fy and yf, where y is the anchor of f with respect to s. Unless otherwise
noted, we denote vertices in Uy by u and vertices in V; by v. The two sets are ordered clockwise around
the boundary of P starting at f. We consider v; as the vertex following the last vertex w5 of Uy i.e. we
consider vy as ujast+1. P(Uy, Vy, f), the polygon induced by Uy U Vy U f, is denoted by FP’. Let Vy(u;)
denote the vertices in V; f-visible from u; i.e., the vertices in V to the left of the extension segment of
u;f. Let Up(w;) = {ux € Us,k > i}. See figure 2.

Lemma 3.1 Foranyu; € Uy, a(s, u;) must either turn at a vertez in Vi(u;), or otherwise turn at a visible
pair of vertices v,u with u € Ug(u;) and v € Vg(u) — Vi(u;). In other words, a(s,u;) = w(s.v)Unm(v.u;)
for v € Vy(u;) or otherwise a(s,u;) = (s, v)UTT U 7(u,u;) for u € Ug(u;),v € Ve(u) — Vi(u;).
Lemma 3.2 For any verter x in P(Wd;51), a(s,z) must turn at some vertex in V(u;) U Uy(n;) ic..
a(s,z) = a(s,y) Un(y,z), y € Vp(ui) U Ug(ui).

Vertices in V; are weighted with their geodesic distance from s. Suppose vertices in {7¢(u;) are
weighted with their alternative distance from s. Consider the weighted geodesic Voronoi diagram of
Vi(ui) U Ug(u;), Vorp(Vi(ui) U Ug(u;)), in polygon P’. For details on geodesic Voronoi diagrams see [1].
Lemma 3.3 The set of vertices which are possible alternative anchors for vertices in P(W;u;47) arc those
whose regions in Vorp/(Vy(u;) U Ug(u;)) intersect diagonal W47, u; € Uy.

We first find the list of regions of Vorp:(Vy(u;)) crossing w1, L*(Witig1, V), then the list of regions
of Vorp(Uys(u;)) crossing iuiy1, L*(@iwis1, Us), and we merge the two lists.

The difficulty is how to find L*(u@;57, Vy) efficiently. For this purpose we define the following. Let
chain(u;) denote the convex chain of the ordinary shortest path between v and w;. chain(u;), Yu; € Uy
implies a unique triangulation of the part of P delimited by chain(uy) and Uy U {v;} (see figure 3). Let
L(V{(u;)) denote the list of regions of Vorp/(Vy(u;)) intersecting with chain(u;).

To find L*(ww47, Vy) we use the triangulation of P’ induced by chain(u;),uw; € (/;. We consider

vertices in Uy and V; in clockwise order starting at u; and v; respectively. At all times we counsider
only f-visible vertices. Suppose we have constructed L(Vy(u;)). We extend L(Vy(w;)) from chain(u;) to
chain(u;41) using Aronov’s extension procedure [1], and split the list at u;.;. Part one of the list gives
L* (w71, Vy) and part 2 is used to continue. Then we add to part 2 any vertices f-visible from u;y,
one by one, and update to get L(V;(ui41)). The algorithm takes O(rlogr) time, r-= |Uf| + |Vy|. ic..
O(nlogn). To find L*(%Wiz1, Us), we use the triangulation of P’ induced by diagonals u; f.u; € 'y and
use a variation of Aronov’s extension procedure. The time is O(|Uy|log|Uy|). Merging L™(wiui71, U'y) and
L*(@u;31, Vy) can be easily done using a simplification of the usual Euclidean Voronoi diagram merge
procedure [8].

Let L*(W;u;31, Vs U Uy) denote the obtained list for each diagonal . To derive the shortest alternative
paths for vertices in D(f) we extend L*(%%31, VsUUy) in P(u;u;37) using Aronov’s extension procedure
(1]. P(@ui1),Vu; € Uy is arbitrarily triangulated. For each vertex w € P(W+7) U {u;} encountered
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while extending, let y be the anchor of the region in L*(d,Uf) to which w belongs (d is the current
diagonal ). Then edge T is in a(s,w). See figure 4. When L*(d, VU Uy) is left with the region of only
one v € Vy U Uy, we are back in the ordinary shortest path case.

The total time complexity is O(nlogn).

4 The case of more than one “forbidden” vertex.

Suppose F = {fi, f2} and without loss of generality fi ¢ D(f;). Let Vy,, Uy, and Vy,, Uy, if fo & D(fi).
be defined as in the previous section. If f, ¢ D(f1) and f2 € Vy,, f2 does not interact with the alternative
paths to D(f1) and thus the algorithm of the previous section can be used for D(f;). Similarly, f; does
not interact with D(f2) if f € D(f1) and f; € Vy,. Suppose f, € D(f1) — Uy,. To find the alternative
paths to D(f;) we can use the algorithm of the previous section for f = f;. While extending the obtained
list of regions in D(f1), f; will be encountered. We continue extending until the list is left with only
the region of f;. Any vertices in the region of f, are descendants of f, and form the new D(f,). For
the shortest alternative paths to the new D(f;) we can repeat the algorithm of the previous section for
f = f2. Here, we will only discuss the case where f, € Vy,. fo € Uy, can be handled in a similar mauner.

Assume f; € Vy, and w(s,u),u € D(f1) turns left at fi. f, partitions Vy, in 3 parts: "'fll' the part of
V; to the right of fi fo, szl, the part of Vy, — D(f;) to the left of f; f3, and Vfl , Vi 0 D(f2). See figure 5.
There are two problems to resolve here. One is that the alternative weights of V. f" are not known and
the other that both f; and f; may block visibility between Uy, and V}l. To resolve the second problem.
in addition to Uj, we need to consider Wy,, the set of vertices in D(f;) visible from f,. In general
Up N W, #0.

Let Zy = Uy, UWy,. Zj, is ordered clockwise according to the polygon boundary starting at f;. Let
m(z;, zi4+1) be the shortest path between z; and z;41. If 7(z;, 2:41) is the polygon diagonal =577 then
P((zi, zi41)) is P(ZiZiz1). Otherwise, P(m(z;, zi41)) is the union of all P(Grg37) where 7(2:%41) is the
convex chain q1q2,...q:, 1 =2, ¢t = 2i41,t > 2. Let Z}l denote the set of all vertices on m(z;z;41). 2 € Zy,.

Let L*(7(zi, zi+1), V;‘l),k = 1,2,3 denote the list of Voronoi regions in polygon P( Z5 - \}";.f}.jiz) of
the “appropriate” vertices in V}i crossing m(2;, zi41). For Vj?l and Vfl the “appropriate” vertices are
Vf";(u.-) and V}’l (u;). For Vfl1 the “appropriate” vertices are those specified by lemma 4.1. See for example
figure 6. Let L*(m(2i,2i41),Zy,) denote the list of Voronoi regions of the “appropriate™ vertices in Z,
crossing 7(z;, ziy1). In this case the “appropriate” vertices are given by lemma 4.2.

Lemma 4.1 Consider z;,2zi41 € Zy. Let z; = ug if z; € Uy, or z; € P(ugugey) otherwisc. Let
Zi41 = Wiy if zig1 € Wy,, or zi41 € P(W;w;41) otherwise. The V}l candidate alternative anchors for
vertices in P(m(zi,zi41)) are the vertices both fy-visible from ui and fy-visible from w,y;.

Lemma 4.2 For z;,z;41 € Zy,, the candidate alternative anchors from Z 1, for vertices in P(7(z;. 241))
are {zy € Uy, k > i} and {2, € Wy, k < i}.

Assuming the alternative weights of Vf; are known, we find L*(7(z;2i41), Vf";) for k = 1.2 3 and merge
to get L*(7(zi, ziy1), Vy,), the list of Voronoi regions in P of the “appropriate vertices in 1, crossing
(2, 2i41)- It can be shown that the result of merging is correct although the three lists are defined on
different polygons not necessarily subpolygons of P. We also find L*(m(z;, zi41), Z5,) and merge with
L*(7(zi, 2i41), V) to get L*(m(zi, 2i41), Vs, U Zy,). Finally, we extend as in the previous section. The
difficulty is how to find L*(7(2i2i41), V},) without increasing the time complexity. Modifving the previons
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algorithm we are able to give an O(|Z},| + |V} |)log(|Z%, | + [V} |)) time algorithm.

To find L*(7 (2, zit1), V5, U Zy,) we do not need the actual alternative weights of Vfi As lemma 4.3
indicates, it is enough to find the alternative weights from Vf12 , the part of V}, to the left of fof; (see
figure 5). We can find these alternative weights in the same way as we find the alternative weights of Z,
from Vfll .

Lemma 4.3 Ifa vertezv € Vfll is the alternative anchor of a vertez in D( f1) then the alternative anchor
of v is a vertez in V}z.

After the alternative weights of Zy, are found we can find the alternative weights of D( f;).

In general, for an arbitrary number k of forbidden vertices, instead of finding the whole visibility
graph we find only the visibility from the forbidden vertices. For f; € F, Zy, is the set of vertices in
D(f;) visible from any forbidden vertex of Vy, U Uy,. We break Vj, and Uy, into groups of normal vertices
separated by forbidden ones and work with only two groups of vertices at a time in a similar way with
the case of only two vertices. This approach will give an O(knlogn) algorithm where & is the number of

forbidden vertices.

5 Conclusion and open problems

We presented the shortest path problem in a simple polygon in the presence of forbidden vertices and
discussed a geometric solution. The first open problem to consider is whether or not the above briefly
presented algorithms are optimal. Even in the presence of only one forbidden vertex can we do betrer
than O(nlogn)? Is linear time achievable?

As the number of forbidden vertices increases, the problem “loses” in geometric flavor. The main
reason is the lack of path monotonicity. If the number of forbidden vertices is large, constructing the
whole visibility graph is more efficient than the above mentioned method which constructs the subgraph
of the visibility graph from the forbidden vertices only. Whether a subquadratic geometric solution in
the presence of an arbitrary number of forbidden vertices can be derived is an open question.
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Figure 1: Problems arising because of forbidden vertices. Vertices in circles are “forbidden™.
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Figure 2: Vs ={v1...,v}, Us = {u1,...,ur}, v1 = us, Vy(us) = {v1,v2, v3, V4, Us}, Us(us) = {us, us}
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