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Abstract

We present a wavefront-propagation algorithm for
computing Voronoi diagrams (under the Euclidean
metric) of convex polyhedra in 3D. The algorithm
needs only O(nv log ny ) time in the worst case, where
ny denotes the size of the output Voronoi diagram.
The algorithm is output-sensitive, i.e., exactly those
Voronoi faces and Voronoi edges are generated which
are part of VD(B). In particular, the number of com-
putationally expensive floating-point operations is lin-
early related to the actual number of Voronoi faces
and edges. The algorithm traverses the Voronoi di-
agram under construction from outwards to inwards,
similar to the 2D approaches of Preparata and Pers-
son. For this purpose it maintains Voronoi nodes
which are not yet processed in a priority queue of size
O(nv), and it is the cost of this bookkeeping which
contributes the log-term in the complexity bound.

1 Introduction

1.1 Motivation

Consider a convex polyhedron P within the three-
dimensional Euclidean space E, and let B be its polyg-
onal boundary. The Voronoi diagram VD(B) parti-
tions P into mutually disjoint regions, the so-called
Voronoi regions, where every region is associated with
exactly one boundary facet. Clearly, if there were
a fast algorithm for computing Voronoi diagrams of
polyhedra in 3D, at least some of the successful 2D
applications of Voronoi diagrams could also be ex-
tended to 3D. However, in sharp contrast to 2D where
several worst-case or average-case optimal algorithms
are known, up to now little is known for the 3D set-
ting. Most of the work on Voronoi diagrams in higher
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dimensions focussed on sets of discrete points. For
extensive references we refer to [PS90, OBS92].

Milenkovic [Mil93] proposed a robust algorithm
for computing Voronoi diagrams of general polyhedra.
His algorithm has a running time of O(npny log? b),
where np is the size of the input polyhedron, i.e., the
number of the polyhedron’s facets, edges, and ver-
tices, and where ny is the size of the output Voronoi
diagram, and b is the number of desired bits of preci-
sion. Hoffmann published an algorithm for computing
the skeleton of a CSG solid, cf. [Hof90]. Nackman and
Srinivasan [NS91] prove that the bisector of a linearly
separable set is a manifold (in any dimension).

A detailed description of an approach to comput-
ing discretized versions of the Voronoi diagram of a
solid shape is presented by Okabe et al. in [OBS92].
After sampling the shape’s surface the Voronoi dia-
gram of the set of sample points is computed. By
eliminating certain Voronoi surfaces an approxima-
tion of the solid’s Voronoi diagram is obtained. See
also the work by Armstrong [Arm91], Chiang [Chi92],
and Goldack et al. [GYKD91].

We note that the size of a Voronoi diagram of
a polyhedron may be at least an order of magnitude
larger than the size of its defining polyhedron. In
particular, even a convex polyhedron of size O(np)
may define a Voronoi diagram which has up to O(n%)
many Voronoi faces, cf. Fig. 1. Thus, achieving
output-sensitivity is an important issue.
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Fig. 1: A Convex Polyhedron with O(n?) Voronoi
Faces
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1.2 Survey of the Algorithm Proposed

In the sequel we will outline a fast algorithm for com-
puting the Voronoi diagram VD(B) of B for a convex
polyhedron bounded by B. Our algorithm needs only
O(nvy logny) time in the worst case. The algorithm is
output-sensitive, i.e., exactly those Voronoi faces and
Voronoi edges are generated which are part of VD(B).
In particular, the number of computationally expen-
sive floating-point operations — such as intersecting
bisectors — is linearly related to the actual number of
Voronoi faces and edges.

The algorithm can be expected to be reasonably
fast even when np gets large. A 2D version of the
algorithm proposed in this paper — for general poly-
gons — was implemented by the author and appealing
results were obtained, cf. Held [Hel93]. In fact, the
running time of the 2D algorithm usually also behaves
well for general polygons, although the algorithm is
no longer output-sensitive for general polygons.

The algorithm traverses the Voronoi diagram un-
der construction from outwards to inwards. Basically,
it is a wavefront-propagation approach, akin to a 3D
prarie fire, where the event points are given by the
nodes of the Voronoi diagram, and where the wave-
front status captures the topological and metric data
of the Voronoi diagram intersected by the wavefront.
The wavefront starts at the boundary B and uni-
formly propagates inwards. For this purpose the al-
gorithm maintains Voronoi nodes which are not yet
processed in a priority queue of size O(ny), and it
is the cost of this bookkeeping which contributes the
log-term in the complexity bound.

Wavefront-propagation approaches to the com-
putation of Voronoi diagrams of 2D shapes have
first been proposed by Preparata [Pre77] and Persson
[Per78]. Preparata’s algorithm computes the Voronoi
diagram of a convex n-gon in O(n logn) time, and the
algorithm presented here is an extension of Preparata
and Persson’s ideas to 3D. Recently, Giirsoy and Pa-
trikalakis [GP92] employed an algorithm based on
Preparata’s approach for finite-element meshing in

2D.

This paper is structured as follows: The next sec-
tion introduces the notation used in this paper and
establishes some basic facts which will be used in the
analysis of the algorithm. Section 3 contains the algo-
rithm. A (sketch of a) formal analysis of the algorithm
is carried out in Section 4.

2 Preparing for the Algorithm

Throughout the paper we assume that the polyhe-
dron’s surface B is given by a boundary representa-
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tion, as widely used in the fields of solid modeling.
Furthermore, we assume that no neighboring facets
are coplanar. The 2D entities of B are referred to as
‘(boundary) facets’ whereas the 2D entities of VD(B)
are called ‘(Voronoi) faces’.

2.1 Basic Definitions

For points p,q € E, we denote their Euclidean dis-
tance by d(p,q). As usual, for two sets P,Q C E,
we denote by d(P, Q) the infimum over all distances
between pairs of points belonging to P and Q, i.e.,
d(P,Q) := inf{d(p,q) : p € P,q € Q}. The following
definitions are fairly standard.

Definition 2.1 (Voronoi Region) For a boundary
facet f € B, its Voronoi region VR(f, B) with respect
to B (within P) is defined as

VR(f,B) := {p€ P : d(p, f) < d(p, B)}.

Definition 2.2 (Voronoi Polyhedron)
For a boundary facet f € B, its Vorono: polyhedron
VP(f,B) with respect to B (within P) is defined as

VP(f,B) := Upzres VR(f,B) NVR(f', B).

Definition 2.3 (Voronoi Diagram) The Voronoi
diagram VD(B) (within P) is defined as

VD(B) := U;esVP(f, B).

Conventionally, we call the faces of VD(B)
Voronoi faces. The collection of all edges of the
Voronoi regions corresponds to the so-called (inter-
nal) Voronoi skeleton, SK(B). In analogy to the 2D
setting we call these edges bisectors. Points where
bisectors meet are called (Voronoi) nodes.

Definition 2.4 (Boundary Clearance) For a
point p € P, we call d(p, B) its (boundary) clearance.

2.2 Basic Facts

We note that for every boundary facet f € B,
the Voronoi region VR(f, B) is a convex polyhedron
bounded by f and by VP(f, B). In the sequel, we will
make extensive use of the offset set of P.

Definition 2.5 (Offset Set) For ¢t > 0 we denote
by P; the (interior) offset set of P with minimum
clearance ¢ with respect to B (within P), i.e.,

Pi:={pe?P:d(p,B)>t}.

Let tmaz := max{t > 0: P; # 0}. Then, for 0 <t <
tmaz We denote the boundary of P; by B;.
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Lemma 2.1 (Offsetting P) For every 0 < t <
tmaz, VD(B) NP, = VD(B,).

Corollary 2.1 For every 0 <t < tyqz, the vertices
of B; are given by those points on SK(B) which have
boundary clearance ¢.

Lemma 2.2 (Restriction Lemma) Let ¢ > 0 be
less than the minimum clearance of any Voronoi node
of VD(B). Then the Voronoi diagram VD(B) re-
stricted to P \ P; is given by the restriction of all
Voronoi faces and bisectors originating at the bound-

ary Bto P\ P:.

Definition 2.6 (Incoming/Outgoing) Let v be a
Voronoi node and b one of the bisectors incident on
v. Then b is classified as incoming if the clearance of
v is larger than the clearance of the second endpoint
of b, and outgoing otherwise.

3 The Algorithm

3.1 Initialization

With every Voronoi face under construction we asso-
ciate its boundary - i.e., the two chains of bisectors
~ generated so far. We call these two (chains of) bi-
sectors associated with a face its ‘loose ends’. In the
beginning, the boundary Voronoi faces only have the
boundary bisectors originating at the vertices of B
associated with them, with two boundary bisectors
being associated with one Voronoi face. Eventually,
the loose ends of a face will intersect, thus finishing
the construction of this face.

We start with describing the initialization of the
set of candidate nodes. The following algorithm de-
termines a suitable initial set CN of candidate nodes.

1. CN :=0.

2. For every boundary vertex v compute the bound-
ary bisectors originating at v, and associate them
with their defining Voronoi faces.

3. For every boundary vertex v and bisector b orig-
inating at v:

(a) Intersect b with the other loose ends of the
Voronoi faces it is associated with.

(b) If b has intersections with these loose ends
then select and store! the intersection v’
with minimum clearance, link the intersect-
ing bisectors, and associate v’ with them.

1In case that two bisectors are intersected by b at v’ which
are already linked (and thus already have an intersection asso-
ciated and stored in CN), do not store v’ in CN.

4. For every boundary bisector b, if b has an inter-
section v associated with it then terminate it at
V.

5. Arrange CN as a priority queue such that the
front end is an intersection with smallest bound-
ary clearance.

Of course, all except the last step of this algorithm
can be carried out by traversing B in a manner guar-
anteeing that every boundary facet is visited only a
constant number of times.

3.2 Main Loop

Let us now turn to the main part of our algorithm.
The following algorithm computes the Voronoi dia-
gram of B in a step-by-step manner, thereby proceed-
ing from outwards to inwards:

1. Fetch and delete the front end v of CN until
v can be accepted or d(v,B) > tpay. Let t =
d(v, B). If? t > t,;naz then goto Step 5.

2. Update B:, compute the boundary bisectors of
B: at v, and associate them with their Voronoi
faces.

3. For every boundary bisector b of B; at v:

(a) Intersect b with the other loose ends of the
Voronoi faces it is associated with.

(b) If b has intersections with these loose ends
then select and store® the intersection v’
with minimum clearance, link the intersect-
ing bisectors, and associate v’ with them.

4. Goto Step 1.
5. Report ‘finished’ and stop.

We note that an intersection v can be accepted in
Step 1 as a Voronoi node if it still is contained in the
bisectors it is associated with, i.e., if it still is part of
VD(B) as constructed so far. Intersecting a bisector
with a loose end merely means to compute the in-
tersection between this bisector and the last bisector
of the loose end; as it is proved in Section 4, no in-
tersection which has been accepted will be discarded
lateron. Thus, there is no need for any sophisticated
scanning procedure such as the Lee-Drysdale scanning
scheme employed in the general 2D setting.

2This can be checked by updating B; as the wavefront moves
inwards.

3In case that two bisectors are intersected by b at v’ which
are already linked (and thus already have an intersection asso-
ciated and stored in CN), do not store v’ in CN.



Computing the boundary bisectors of B; at a
Voronoi node v in Step 2 of the algorithm is no de-
manding task as long as the number of incoming bi-
sectors of v is small. For instance, if the vertex v of
P: has three incident boundary edges then the one
and only boundary bisector of B; at v is determined
as follows, cf. Fig. 2, where the dot denotes v and the
numbers refer to the facets of B:

1. Let b(f11f2rf3)7 b(fl)f?;f‘!)a and b(f17f37f4)3 be

the bisectors intersecting at v.

2. Compute the bisector b(f2, f3, fa)-

In this case, three bisectors intersect at v such that a
Voronoi region is closed.

b(1,2,3)
A 234

b(1,2,4)
o /

b(1,3,4)
Fig. 2: Three incoming bisectors.

If v has two incoming bisectors, the following
simple subalgorithm computes the new boundary bi-
sectors, cf. Fig. 3:

1. Let b(f1, f2, f3) and b(f2, f3, f1) be the bisectors
intersecting at v.

2. Compute the Dbisectors

b(fl;f3yf4)‘

In this case, v regarded as a vertex of P; has four
incident boundary edges.

b(fl)f?)f‘}) and

A
N _b(1,24)

b(1,2,3)

.........................

- L1,(1,3,4)
\ b(2,3.4)

Fig. 3: Two incoming bisectors.

The ‘degenerate’ case of k > 4 boundary edges of
P: being incident upon v needs a more careful treat-
ment. Observe that the boundary facets correspond-
ing to these edges form a convex cone centered at v.
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Fig. 4 shows such a cone and its Voronoi diagram.
We apply a divide-and-conquer scheme to this cone
which is akin to Lee’s divide-and-conquer algorithm
[Lee82] for constructing the Voronoi diagram of a 2D
polygon. Conceptually, the facets of the cone corre-
spond to the polygon’s edges and the Voronoi faces
correspond to the polygon’s bisectors. Thus, in time
O(klog k) we can construct all boundary bisectors at
a degree-k vertex v.

Fig. 4: Cone of boundary facets and its Voronoi dia-
gram.

4 Formal Analysis

We start with a sketch of the correctness proof of the
algorithm.

Lemma 4.1 (Initialization Lemma) Let

V1(B) be the set of nodes of VD(B) which have small-
est boundary clearance among all Voronoi nodes. Let
Va(B) be the set of those nodes stored in CN which
have smallest boundary clearance among all nodes ini-
tially stored in CN. Then V;(B) = V»(B) holds.

Proof:

We first prove that all Voronoi nodes of smallest clear-
ance are contained in CN, i.e., that Vi(B) C Va(B).
Then we show that V5(B) C V4(B).

Let v € Vi(B), and suppose that it is not contained
in CN. Let t := d(v,B). Assume that there is at
least one boundary bisector b incident upon v, and
let b1,...,b; be the bisectors incident upon v which
are contained in the Voronoi faces that share b, cf.
Fig. 5 for k = 3; ey, e,,e3 denote boundary edges.
Since v is not contained in CN, none of by, . . ., b can
be a boundary bisector. Thus, b, ..., b are line seg-
ments extending between v and some Voronoi nodes
vi,..., vk, where none of vy, ..., v, lies on B. Since
the boundary clearance of v is minimal among all
Voronoi nodes, none of vy, ..., v can have a smaller
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clearance than v, and since no two neighboring facets
are coplanar, at least one of these nodes has a strictly
larger clearance than v. Thus, by, ...,b; form a con-
vex cone centered at ¥. Now consider the intersec-
tion of this cone with a plane which cuts off v. In
Fig. 5, the convex polygon defined by this intersec-
tion is given by the shaded triangle. We note that
the clearance distances of the polygon’s vertices are
greater than (or equal to) ¢, with at least one clear-
ance being strictly larger. Due to the convexity of
P, the boundary clearance of any point belonging to
this polygon’s interior also is strictly larger than ¢.
By virtue of v being a Voronoi node, there has to
exist a point p on the boundary of B which is con-
tained in this cone such that d(v,p) = t. Thus, the
line segment linking v and p has to intersect the inte-
rior of the convex polygon in a point p’. This yields
d(p,p’) >t and d(v,p) = d(v,p') +d(p’,p) = ¢, ie., a
contradiction. The case that no boundary bisector is
incident upon v can be proved similarly. We conclude
that v is contained in C'N. If there were a node con-
tained in CN with boundary clearance smaller than
v than this node would be a Voronoi node, too, and
v & Vi(B). Thus, v € Va(B).

Now assume that v € V3(B) is no Voronoi node. Let
t := d(v, B), and let b; and b, be the boundary bisec-
tors intersecting at v. Since v is no Voronoi node, v
lies completely in the interior of some Voronoi region,
and b; and b, are intersected by some other bisectors.
These intersections have a strictly smaller bound-
ary clearance than v because the boundary clearance
increases strictly monotonously as one moves along
b1,b; away from the boundary (towards v). Thus,
there do exist Voronoi nodes with boundary clearance
less than t. However, according to the first part of the
proof, all Voronoi nodes with minimal clearance are
contained in CN. Thus, CN contains nodes whose
boundary clearence is less than ¢, which violates the
definition of V2(B). m]

Fig. 5: CN contains all Voronoi nodes of minimum
clearance.

The following lemma already captures the main
correctness aspects of the algorithm proposed. To
help intuition, imagine shrinking P successively. Let
t; < ... < ty, denote the (sorted) boundary clear-
ances of the Voronoi nodes, with identical clearances
listed only once. We say that ‘pass ¢ has been fin-
ished’ if the algorithm accepts a Voronoi node with
clearance t;4, for the first time. By definition, the ze-
roth pass is the execution of the initialization phase,
and tg := 0.

Lemma 4.2 (Loop Invariant) The following loop
invariant holds after the i-th pass (for 0 < i < m),
where V1(B:,), Va(B:,) are defined as in the previous
lemma:

e Vi(B,) = Va(B,);
® VD(B) N (P \ P.,,,) has been computed.

Proof: .

For 7 = 0, the loop invariant is fulfilled due to the Ini-
tialization Lemma4.1 and the Restriction Lemma 2.2.
Assume inductively that it is fulfilled after the ¢ — 1-
th path, for some 1 <i < m. W.lo.g., |Vi(B;,)| = 1,
and let v be the node accepted at the beginning of
the ¢ + 1-th pass. Thus, t;4; = d(v, B). We observe
that all boundary bisectors of B;, which are not in-
cident upon v also are boundary bisectors of By,,,.
Thus, intersections among them are already stored in
CN. The only ‘new’ boundary bisectors of B;,,, are
the bisectors incident upon v which are constructed
in Step 2 of the algorithm’s main loop. Since the in-
tersections of these new boundary bisectors with the
already existing boundary bisectors of B;,,, are com-
puted by the algorithm, we conclude that all intersec-
tions among boundary bisectors of By, are stored
in CN. Hence, CN contains all nodes which would
have been stored in CN by applying the initialization
phase directly to B:,,,. By applying the Initialization
Lemma 4.1 and the Restriction Lemma 2.2 to B, X
we obtain that the loop invariant is fulfilled after the
i+ 1-th pass. a

Corollary 4.1 The algorithm correctly computes
the Voronoi diagram VD(B) of a convex polyhedron
with boundary B. In particular, the vertices of VD(B)
are accepted exactly in the order of their boundary
clearance.

Lemma 4.3 (Complexity Lemma) The

algorithm spends O(ny logny) time on computing
VD(B), where ny denotes the output size of VD(B),
i.e., the number of faces, edges, and vertices of VD(B).



Proof:

First note that the initialization phase can be carried
out in O(np) time*, since computing and intersecting
the boundary facets and bisectors takes constant time
per item. The priority queue initially is of size O(np)
and can be generated in O(np) time.

The bound on the overall complexity is easily derived
by observing that the algorithm does not discard any
Voronoi node after accepting it. Thus, the total num-
ber of candidate nodes which have to be inserted in
resp. deleted from C'N is O(ny). Similarly, the maxi-
mum number of intersections computed is O(ny ). In-
serting a node in resp. deleting a node from C'N takes
logny time at most. Computing the new bound-
ary bisectors takes O(klogk) for a newly accepted
degree-k Voronoi node v. Since no accepted Voronoi
nodes are ever discarded, this cost occurs only once
per Voronoi node. We conclude that the algorithm’s
total worst-case complexity is O(ny logny). 0O

We summarize our results obtained in the follow-
ing theorem.

Theorem 4.1 The algorithm computes the Voronoi
diagram VD(B) of a convex polyhedron with bound-
ary B in time O(nvy logny), where ny denotes the
output size of VD(B). In particular, exactly those
Voronoi faces and Voronoi edges are generated which
are part of VD(B).

5 Summary

This paper presents an output-sensitive wavefront-
propagation algorithm for computing the Voronoi dia-
gram of a convex polyhedron. The algorithm’s worst-
case complexity is O(ny logny ), where ny denotes
the size of the output Voronoi diagram. We expect
that the algorithm can be generalized to higher di-
mensions and can be adapted to handling more gen-
eral objects than convex polyhedra. An implementa-
tion of the algorithm is planned for the near future.
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