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1. Introduction

Generalized Voronoi diagrams are extensions of classical Voronoi diagrams[1] in general di-
mensions and for general sets. These diagrams are geometric constructs which are interesting
in their own right; they also prove to be very useful in applications. It is quite clear that
for such a diagram to be used efficiently, a comprehensive knowledge about its geometry is
necessary. Lor example, if such a diagram is to be used in motion planning problems, it
is absolutely necessary to know about its connectivitv: and also about the pronerties of its
disconnections, if any. Such examples assert that a thorough knowledge of the qualitatitve
properties for such a diagram is useful in practical applications besides being in itself an
interesting geometric problem.

In this paper, we establish some qualitative properties for a generalized Voronoi diagram
for convex polyhedra in d-dimensions. This generalized Voronoi diagram was proposed [or
three dimensions in [2.3] for a convex polyhedron M with non-empty interior moving among
convex, pairwise interior disjoint polyhedral obstacles O;s with non-empty interiors and
certain qualitative properties for the diagram were established. This paper carries the idea to
general dimensions; it shows that even in d-dimensions the diagram permits a nice structure;
in fact one important result remains entirely unaltered. We belicve that this is the first
attempt to establish such nice geometric and qualitative properties of a generalized \oronoi

diagram for convex polyhedra in d-dimensions.

2. Preliminaries
In this section, we briefly describe some important definitions. More details can be found in
[4].
Definition 2.1 A set S is said to be polyhedral if S can be written as a finite union of
convex polyhedra, i.e., § = UL, P, where each P, is a convex polyhedron and n is finite.
Definition 2.2 Suppose X;, 7 = 1,...,n are polyhedral sets. Let E; be the set of all
open 1-faces of X; and V; be the set of all 0-faces of X;. Then we call the set § = U{E; UV}

the wireframe of {X;}.
The following definition is taken from a paper by Leven and Sharir[5].
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Definition 2.3 Let ¢ € R. The M-distance of a set A from z is defined as the minimum

expansion required of M when v,.; is placed at z such that M “just touches” A. Formally,
d(z; A) = inf{): (:l:-lw\M)ﬂA #¢,A > 0}

If z € A then d(z; A) = 0. For convenience, we write d(z; 0;) as di(z).
Definition 2.4 Let O; be an obstacle. Then the cell associated with O;, C; is the set

{z € R : di(z) < dj(z) Vi #i,j€el,...,Q}

Physically, this is the set of all points in R? from where M is closer to O; than any other
obstacle. It is not difficult to see that each cell is polyhedral.

Definition 2.5 Let z € R*\ UO; and consider (z + di(z)M). Clearly (z + di(z)M)
touches O;. Then, by convexity of O; and M, a unique open facet o; of O; is being touched
by a unique open facet o, of J/. We call the ordered pair (0i,0r) as the touch description
associated with the touch.

Definition 2.6 For the touch description associated with a touch ¢ we define loss of
degrees of freedom ldof(t) as (d + 1)— the number of free variables in the set of linear
equations which describe the touch.

Consider an z € R*. Suppose z is such that exactly & obstacles Oy, ..., O are cquidistant
from . and no other obstacle is as close as any of these & obstacles. Then when M is placed
with vp.p on o and expanded by d,(x), there are exactly & touches, say ty,....t.. Fach one
of these touches ¢; has one touch description (o;, 0., ) associated with it.

Definition 2.7 We call the list ((),,d,,,,, s+ 30Ky Om, ) as the type of touch T at .

Definition 2.8 Counsider a type of touch T. By definition T is a 2k-tuple (01,0, - - - 0x,
om, ). The loss of degrees of freedom associated with the type of touch T, ldof(T) is defined
as the sum of the loss of degrees of freedom for each touch description (o;,0.,) associated
with the touch ¢;, i.e. Idof(T) = ¥ ldof(t;).

As in [J], we make certain generic assumptions[6] on the relative orientations of the
obstacles. We give here only one of those which we will require later.

Assumption Let & > 1 and consider any k distinct touches, each touch being described
by a touch description ¢;,7 = 1....,k. Then the set of all points where exactly these &
touches (and no other) are maintained is either empty or a (d+1)— (T ldof(t;)) dimensional
manifold. A set having negative dimension is taken as the null set. ’

We refer to this assumption as independence[7].

We use the name skeleton for the Voronoi diagram which is formally defined as:

Definition 2.9 The skeleton of R*\ JO; is the wireframe of {C:}:ZF where C is as in

definition 2.4 and wireframe is as in definition 2.2.

3. Qualitative Properties

In this section, we give the main results. Because of lack of space, we omit all lengthy proofs.
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Full details can be found in [4]. Also, we believe an understanding of the results for three
dimensions(3] will help the reader.

Proposition 3.1 In general, the skeleton may have several disconnected components in
one connected component of the free space.

Proof See [7] for an example which proves this result for three dimensions. .

Definition 3.1 An obstacle O; is said to be active at a point z if d;(z) < di(z) Vk €
{1,2,...,@Q}. An obstacle O; is said to be active in a set A if O; is active at z Vz € A.

In the following, we will use the word “polytope” as a short form for “polytope lying on
the union of the boundaries of the cells”.

Definition 3.2 Suppose P and P, are k dimensional polytopes such that the following
hold: i) P, C relint(P,) and ii) there exists open set O, O O P, such that the type of touches
remain unchanged at z Vr € relint(ONP,) \ P,. Then we say: P, is a contained polytope,
P, is a container polytope, P, contains P, and P, is contained by P;.

Proposition 3.2 Let P, and P, be two contained polytones. Then PN P, = 6.

Proof If P, and P, arc contained in two different container polytopes then the result is
trivial. So suppose both P, and P, are contained in the same polytope P. Then Py, P, and
P are of the same dimension, say A.

Suppose Py P # ¢. Suppose Py Py is a facet of dimension m, k=1 > m > 0. Consider
the touches Ty associated with Py for any = € P, P,. Then ldof (1)) = (d = m +1). Again,
consider the touch Ty associated with Py for any £ € Py Py. Then ldof(T)) = (d = m + 1).
But at least one touch pair in 1y is distinct from all touch pairs in 75 as P, # %, and both
of these are contained. This implies that total loss of degrees of [reedom at any ¢ € PN Ps
is at least (d — m + 2), which is a contradiction. .

Definition 3.3 Lvery path component of the skeleton is called a skeleton component.

Definition 3.4 Suppose P is a polytope and S is a skeleton component such that
S1Nbd(P) # é. Then S is said to be the skeleton component associated with P.

The structural results, which we call “structural lemmas” require several subresults for
their proof. Because of lack of space we don't include all those results and their proofs;
instead we try to give some intuitive justification towards these lemmas. We will discuss the
case of three dimensions as that is intuitively easy to follow. Full details can be found in [4].

Consider a polygon P on the boundary of a cell which contains other polygons inside
it. Since we are considering three dimensions, there are two obstacles which are equidistant
from P. For every point z in the interior of P (with all its contained polygons removed) we
can find the closest points on these two obstacles. Then it is intuitively clear that no point
on the line segments joining r and these two closest points can be a skeleton point. The
following proposition states this result formally in d-dimensions.

Proposition 3.3 Let P be a container polytope and {Py,..., P.} be the set of all poly-
topes contained by P. Let U = {z : = € relint(P \ U P:)}. Suppose the obstacles active in
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U are Oy,...,0,. Let V = {Ul., Z¥;z Yz € U}. Then V does not have a skeleton point.

Proof See [3] for the proof for three dimensions. A similar proof holds for general
dimensions. .

Given the above proposition, it is easy to “see” the following. Suppose P contains
several polygons inside it. Then the set V (as in proposition 3.3) “encloses” all the skeleton
components associated with these contained polygons, and since these contained polygons
are disjoint (proposition 3.2) there is a part of V separating every pair of these components.
This leads us to the following result.

Lemma 3.1 Let P be a container polytope of dimension g and {Pi,...,P.} be the set of
all polytopes of dimension g contained by P. Then the skeleton components associated with
P and Py are disjoint Vk = 1,...,r. Also, for m,s € {1,...,7} and m # s, the skeleton
components associated with P, and P, are disjoint.

Since the cells are connected, it is clear that if there are two skeleton components in
one connected companent of the free <pace then they are “neighbonring componcniz’ i,
both of them has parts common to one cell, and therefore one of them is associated with
a contained polygon of the cell whereas the other is associated with the container polygon.
This result extends over any number of components and over any dimensions: it is formally
stated as follows.

Lemma 3.2 Suppose there exist m skeleton components Sy, ....5,, in one connected
component of [ree space, and m > 1. Then cach skeleton component S; cither has a polytope
P; which contains a polytope £, of some other skeleton component S;.J #F tor has a polytope
P which is contained in a polytope P, of some other skeleton component S, #F L

Consider a polygon P in three dimensions containing a polygon £,. Since we are consid-
ering three dimensions, and P is contained in the relative interior of a polygon P there exists
an obstacle O which is associated with P, and not P. This is easy to sce: P has exactly
two obstacles active in its relative interior with a loss of degrees of freedom = 2 whereas the
boundary of P, needs a loss of degrees of freedom ; 2. Thus the cell associated with the
obstacle O is wholly “enclosed” within the set V formed by the relative interior of P (with
P, removed. sce proposition 3.3). This immediately tells us that O can never contribute a
point to any skeleton component lying “beyond” V. This result nicely generalizes as the
following lemma. _

Lemma 3.3 Let S be a skeleton component. Let p be any point on S; and 0,,0,....,0,
be the obstacles active at p. Then there does not exist a skeleton component S,, such that
SmNSi = ¢, and S, has a point q at which 0,,0,,...,0, are active.

By the discussion preceding lemma 3.2, the following result is easy to see.

Lemma 3.4 Suppose P and P, are two polytopes in the boundary of cell C;. If the
skeleton component associated with P and the skeleton component associated with P, are

disjoint then at least one of P and P, is  contained polytope.
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By the discussion preceding lemma 3.3, we see that the cell associated with O lies wholly

“within” V. Now consider the skeleton component associated with the contained polygon
Py. If any of the polygons (not P;) which are connected to this skeleton component is a
contained polygon then we can use the same argument, and prove the following result.

Lemma 3.5 Let S be a skeleton component. Let P be a polytope such that the skeleton
of P C S and P is contained by another polytope P;. Then there does not exist any polytope
P, such that P, # P, skeleton of P, C S and P, is contained.

Also the following very interesting result is now intuitively easy; each contained polygon
has one obstacle associated with it which is wholly enclosed locally, and the generalization
is: |

Lemma 3.6 There exist only O(Q) contained polytopes.

Using the above lemmas, it can be established that:

Lemma 3.7 Among all the skeleton components in one connected component of the free
space, exactly one of them has all non-contained polytopes.

These results characterize the generalized Voronoi diagram in a geometric way. Note
that all the results except lemma 3.6 are geometric in nature. Also. there are remarkable
similarities between the corresponding results in three dimensions[3] and the results in d-
dimensions.

Lemma 3.6 needs special mention. The result for three dimensions has exactly the same
statement: this shows that the number of “disconnections” in the generalized Voronoi dia-
gram is independent of the dimension as well as the size of the moving object and obstacles.
This itsell is a very interesting topological result. This shows that if the number of obsta-
cles is assumed to be a constant then the generalized Voronoi diagram in any dimension
can always be made complete (i.e., having only one connected component in one connected
component of the free space) by addition of a constant number of extra edges. This clearly
tells us that this diagram is very suitable for application in motion planning problem for

convex polyhedra.

4. Conclusion

In this paper. we stated some qualitative properties of a generalized Voronoi diagram for
convex polyhedra in d-dimensions. We discussed that these results have interesting impli-
cations. In fact we have an algorithm which uses these properties to construct the skeleton
and to identify the “disconnections”; adds extra edges to the skeleton to make it complete,
and uses it to find a feasible path for M from a given initial point to a given final point.

This will be described in a later paper.
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