153

Incremental Algorlthms for Finding the Convex Hulls of Circles and the
Lower Envelopes of Parabolas

Olivier Devillers *

Abstract : The existing O(n log n) algorithms for finding
the convex hulls of circles and the lower envelope of parabolas
work using the divide-and-conquer paradigm. The difficulty
with developing incremental algorithms for these problems is
that the introduction of a new circle or parabola can cause
O(n) structural changes, leading to ©(n?) total structural
changes during the running of the algorithm. In this note we
examine the geometry of these problems and show that, if the
circles or parabolas are first sorted by appropriate parame-
ters before constructing the convex hull or lower envelope
incrementally, then each new addition may cause at most
3 changes in an amortized sense. These observations are
then used to develop O(nlogn) incremental algorithms for
these problems. Keywords: Convex Hulls, Circles, Parabo-
las, Lower Envelopes.

1 Introduction

In this paper we describe a technique that yields
O(nlogn) time incremental algorithms for constructing
the convex hulls of circles and the lower envelopes of
axis-parallel parabolas. Since, there are already optimal
algorithms for these problems, the main interest of this
paper resides in the high simplicity of the proposed algo-
rithms. Actually, once the input data have been sorted in
a good order the algorithms are incremental and perform
only O(n) logarithmic operations on a balanced binary
tree.

Given a set of circles, S = {C},C,,...,Cyr}, its convex
hull is the smallest convex region containing all of the
circles. The convex hull consists of a sequence of arcs
followed by tangent lines to the arcs (connecting them
to the next arc on the hull). See Figure 1. The convex
hull can be constructed in O(nlogn) time using divide-
and-conquer (3] or a transformation into a 3D convex
hull of points [2].

Given a set of axis-parallel parabolas § =
{p1(2),...,pa(2)}, Pi(z) = a;z2 + bz + c;, its lower en-
velope is the function F(z) = mini<, pi(z). The lower
envelope is composed of arcs of the parabolas. See Fig-

*INRIA, B.P.93, F-06902 Sophia-Antipolis cedex, France. Par-
tially supported by ESPRIT Basic Research Action r. 7141 (AL-
COM II). email:0livier.Devillers@sophia.inria.fr

tHong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, email:golin@cs.ust.hk. Partially sup-
ported by HK RGC CRG grant HKUST 181/93E. Part of this re-
search was performed while the author was visiting INRIA-Sophia.

Mordecai J. Golin 1

Figure 1: The convex hull of circles

Figure 2: The lower envelope of parabolas

ure 2. It is of interest because it describes the way the
closest pair of a set of points moving with constant speed
changes [1]. Constructing the lower envelope involves
identifying the arcs on the lower envelope. There exists
an O(nlogn) divide-and-conquer algorithm for perform-
ing this construction.

An incremental algorithm for constructing the convex
hull of circles would incrementally construct the convex
hull of the sets S; = {C},C,,...,C;}, i < n.. The prob-
lem with such an algorithm is that it would have to find
all of the structural changes that occur while construct-
ing all of the convex hulls and there can be ©(n?) of
these.

As an example consider the following set of 2n circles

154 4 °

Figure 3: An example in which the number of structural
changes in the incremental construction of the convex
hull is ©(n?).

(Figure 3). The first n circles Cy,...,Cy, are points
(small circles) equally spaced around the circumference
of a unit circle centered at the origin. Circle Cr4; is
centered at the origin with radius just enough smaller
than 1 so that CH(Sn4+1) is composed of n arcs on Cp 41
with tangent lines connecting them to the n points. The
remaining circles Cp 41, ..., Can, are nested so that Cp4;
is inside Cp4i+1 and all of their radii are less than 1.
Each of the convex hulls CH(S,+:) is composed of n arcs
on Cpr4+i with tangent lines connecting them to the first
n points. The number of structural changes needed to go
from CH(Sn4i) to CH(Sp+i+1) is n so the total number
of structural changes performed during an incremental
construction is ©(n%).

Similarly, an incremental algorithm for constructing
the lower envelope of parabolas would calculate all of the
lower envelopes F;(z) = min;<; pj(z). Again it is possi-
ble to find examples where the total number of changes
to the lower envelope is ©(n?).

In this note we describe O(n log n) time algorithms for
calculating the convex hull of circles and the lower en-
velope of parabolas. The basic idea in both algorithms
is to show that, if the circles/parabolas are sorted by
appropriate parameters before the incremental construc-
tion begins, then each new circle/parabola will create at
most 3 structural changes in the amortized sense.

In section 2 we describe some properties of the convex
hull of circles. In section 3 we use these properties to de-
velop an O(nlogn) incremental algorithm. In section 4
we describe the algorithm for constructing the lower en-
velope of parabolas. We conclude in section 5 by posing
a related open problem.

2 Convex Hulls of Circles

In this section we discuss some simple properties of the
convex hulls of circles. Let S = {C;,Cs,...,Cn} be a
collection of n circles in the plane. If C is a circle we
use C to denote the open disc it encloses. Similarly we

hadow(C,

Figure 4: Definition of Shadow(C, C").

use CH(S) to denote the boundary of the convex hull
of S and CH(S) to denote the open region it encloses.
Finally, we denote the radius of circle C by »(C).

The convex hull of S is a collection of arcs on the circles
of S and tangent lines between the arcs, each circular
arc being followed by a tangent line. Any one circle
can contribute many circular arcs to CH(S) (Figure 1)
but it is the goal of this section to show that if C is a
circle with smallest radius in S then C contributes at
most one arc. To achieve this goal we describe a new
characterization of the arcs that appear on CH(S). This
requires the introduction of two new definitions that are
illustrated in Figure 4.

Definition 1 Let C, C' be two circles in the plane. The
shadow cast on C by C’ is

Shadow(C,C’) = {p€C : p can be seen from C'}
= CNCH(C,CY).

For notational convenience we set Shadow(C,C) = 0.

Definition 2 For C € S the Clear part of C is the sec-
tion of C that does not appear in the shadow of some
other circle in S :

Clear(C) = C\ U Shadow(C, C’)
c'es

iFrom the definitions it is obvious that Shadow(C, C”)
is an arc on C so Clear(C) is a collection of disjoint arcs
along C. What is remarkable is that Clear(C) is exactly
the set of arcs that appear on CH(S).

Lemma 1

Clear(C) = CH(S)NnC.

Proof. Let p € C. First suppose that p ¢ Clear(C).
Then there is some C’' € S such that p € Shadow(C, C’)
and so, by definition, p € CH({C,C"}) and p ¢ CH(S).

Now suppose that p g CH(S). Draw the line [through
p tangent to C (Figure 5). Because p is not on the convex
hull there must be some circle C’ with some point ¢ € C’
on the other side of / from C. Draw the line segment from
q to p. If the segment cuts C’ at another point ¢’ € C’
replace ¢ by ¢’. Then the line segment connecting p and
q (or ¢') does not intersect either C or C’ except at its

Figure 5: The case p ¢ CH(S).

endpoints. This implies that p is visible from ¢ (or (8
so p € Shadow(C, C”) and p ¢ Clear(C).

In general, Clear(C) can be the union of many arcs
but if C is the smallest circle in S then Clear(C) will be
exactly one arc.

Lemma 2 Let C be a circle such that r(C) < r(C') for
allC' € S. Then Clear(C) is either empty or consists of
ezactly one arc.

Proof. Suppose r(C) < r(C’). Then Shadow(C,C")
covers at least half the circumference of C. Therefore,
each of the n — 1 arcs Shadow(C,C"), C' € S\ {C},
covers at least half the circumference of C. This means
that each pair of such arcs intersects and their union is
exactly one arc. Thus, Clear(C), their complement, is
either empty or consists of one arc.

Corollary 3 Let C be a circle such that r(C) < r(C')
Jor all C' € S. Then C N CH(S) is either empty or
consists of exactly one arc.

Proof. Follows directly from the previous two lemmas.

‘Suppose now that the circles in S are sorted by
decreasing radius with ties being broken arbitrarily:
r(C1) 2 r(C2) 2 ---7(Cn). Let S; = {C),...,C;} be
the set of the first i circles. What changes can occur
while going from CH(S;) to CH(Si4+1)?

If Ciy1 € CH(S;) then there are no changes. Oth-
erwise, Lemma 2 tells us that C;y; contributes exactly
one arc to CH(S;41) along with the two tangent lines
coming off the ends that of arc. These tangent lines
must touch some arcs A;, A; that were previously on
CH(S:). There are two cases. The first is that A; # A,.
Any arcs appearing between A; and A, will be deleted
from the convex hull as they will be in the shadow of
Ci+1. This can only decrease the number of arcs on the
convex hull. Also, the appropriate ends of 4, and A,
are in the shadow of Cj;; as well; this modifies their
definitions but does not increase the number of arcs on
the hull.

The second case is that 4; = A,. None of the other
arcs on the convex hull will be affected by the insertion
of Ci41 but the shadow of Ci4+1 covers the middle of A4;

155
splitting it into into two arcs. This increases the number
of arcs on the hull by 2.

Adding arc Cj4; can therefore at most increase the
number of arcs on the hull by 2; one for the new circle and
one for splitting an old arc. This yields yet another proof
that the number of arcs on the convex hull is at most 2n—
1 (The usual proof utilizes the techniques of Davenport-
Schinzel sequences). It also proves that the total number
of new arcs that exist during the incremental process -
created either by insertion, modification of an endpoint,
or splitting — is at most 3n — 2.

3 Constructing the Convex Hull

In this section we use the results of the previous sec-
tion to design an O(n logn) time incremental algorithm
for constructing the convex hulls S; = {C},C>,...,C;},
t=1,...,n. Before running the algorithm the circles are
sorted by decreasing radius in O(nlogn) time with ties
being broken arbitrarily: r(Cy) > r(C2) > ---r(Cy).

Let ¢ be the center of Cy, a point which will be in all of
the convex hulls. The algorithm assumes that the O(n)
arcs in the convex hull of S; are known and stored in
a balanced binary tree sorted by the angle made by the
lines connecting q with the endpoints of the arcs. The al-
gorithm constructs CH(S;i4+1) from C H(S;) in a two step
phase. In the first step (which we will describe below)
it discovers in O(log n) time whether Ciy; C CH(S;). If
1t is, it stops the phase. Otherwise, it returns a point
p € C outside of CH(S;) and proceeds to the second
step.

Next it does an O(log n) search in the tree to find the
unique point ¢ € CH(S;) on the line connecting ¢ to
p. The line segment or arc that ¢ belongs to will no
longer be on the convex hull so we can walk clockwise
from q along CH(S;) destroying all arcs traversed until
arc A,, which shares a supporting tangent with C;,,
is encountered. We can then go back to ¢ and walk
counterclockwise, again destroying all arcs until arc A,,
which also shares a supporting tangent with Ci,, is en-
countered. If Ay = A, then delete it from the tree and
replace it by the two arcs on A; that are not thrown into
shadow by Ci4y. If A # A, then modify 4; and A4, by
trimming off their appropriate edges. In both cases, cal-
culate the unique arc on Cj4; (the one bounded by the
supporting tangents coming off of 4, and A;) and in-
sert it into the tree. The cost of the second step will
be O(logn + d;logn) where d; is the number of edges
deleted during the step.

The total cost of the entire algorithm is therefore

(0] (n logn + lognZd,-) = O(nlogn)

because }".d; < 3n — 2.
It remains to describe an O(logn) procedure for per-
forming the first step of the phase - deciding whether

156

Figure 6: Hammock(4’, A”).

Ciy1 C CH(S;), and if not, returning a point on Ci4
outside of the convex hull. The O(n logn) running time
of the full algorithm will follow.

To continue we will need the following definitions and
lemma:

Let A’, A’ be two arcs on CH(S;) belonging, respec-
tively, to circles C’, C". Let L, L., L%, L" be the
respective clockwise and counterclockwise tangent lines
leaving the arcs. Define Hammock(A’, A”) to be the con-
vex region bounded by A’, A”, and the four tangent lines
(Figure 6).

Suppose that circle C € Hammock(A4, A’). We say
that C is on the right side of the hammock if C ¢
CH(C',C") but C is to the ‘right’ of the leftmost sup-
porting line of CH(C’,C"). Similarly, we say that C
is on the left side of the hammock if C € CH(C',C")
but C is to the ‘left’ of the rightmost supporting line of
CH(C',C").

In general a circle may be both on the left and right
sides of the hammock but, if »(C) < r(C),r(C") then
C may only be on one side or the other. We gather the
important facts together in the next lemma:

Lemma 4 Given A’, A” as defined above, exactly one
of the following situations occurs. The situation which
occurs can be identified in O(1) time.

1. Ci41 CCH({C",C"}). In this case Ciyy C CH(S;).

2. Ciy1 € Hammock(A’, A”). In this case Ciy1 €
CH(S;) and a point q € C;41\CH(S;) can be found
in O(1) time.

3. Ciy1 in the right side of Hammock(A’, A”).

4. Ciyy in the left side of Hammock(A', A”).

Proof. Parts (1) and (2) follow directly from the defi-
nition of the convex hull which implies that

CH(C',C") C CH(Si) C Hammock(A', A”).

If (2) occurs then we can also find a point on C;4; outside
of the hammock. Parts (3) and (4) follow from the def-
inition of the hammock and the fact that radius(Ci4;)
is not larger than the radii of C’ and C”. O

Using this lemma we can discover whether Ciy; is in-
side the old convex hull. Essentially, we will perform a
binary search on the arcs of the hull searching for two
arcs A, A” such that if Ciy, € CH(S;) then Ciyq €
Hammock(A’, A”). We start with two arcs whose clock-
wise and counterclockwise distances from each other on
the convex hull are approximately equal. At each step
of the algorithm we will split the appropriate chain be-
tween the two arcs in half and recurse on the appropriate
half.

Start with A’ being the leftmost arc in the tree and
A" being the arc corresponding to the root. The number
of arcs on each of the chains connecting A and A’ is
approximately m/2 where m < 2i — 1 is the number of
arcs on the hull. Apply the lemma. If case (1) applies
then Ci41 C CH(S;) so we can stop. If case (2) applies
we have found a point on Cj4; outside of the convex hull
so we can proceed to step 2 of the phase. Otherwise, we
know that C;;; must either be on the left side of the
hammock or the right side. Assume the right (the left
side is symmetric). Let v be the left child of the root of
the tree.

In the general step of the algorithm we have two arcs
A’ and A” and have just descended to node v in the tree
which holds the arc halfway between A’ and A”.

Let A" be the arc corresponding to v. Using the
lemma compare C;4; to Hammock(A’, A"). If case (1) or
(2) occurs we stop the step and either go on to the next
step or the next phase. If case (3) applies then we know
that if Cy41 € CH(S;) then Ci4; must contain a point
outside of the part of the convex hull going from A’ to
A" set A" := A" and v := leftchild(v). Otherwise case
(4) occurs and we set A’ := A"’ and v := rightchild(v).

Continue this procedure until either a case (1) or case
(2) situation is encountered (and we can stop) or v is
a leaf. This takes O(logn) time. If v is a leaf then we
have reached a situation where our chain of arcs only
contains three arcs. Let C’,C”,C" be the circles on
which these arcs are situated. Any point on C;; outside
of the convex hull of these three circles is also outside
CH(S;) so we can, in constant time, decide if Ciy; C
CH(S;), and, if not, find a point on C;4; outside of the
convex hull.

4 The Lower of

Parabolas

Envelope

Let S = {pi(z),...,pn(z)} be a set of n parabolas,
pi(z) = a;z? + b;z + c;. Their lower envelope is the func-
tion F(z) = mini<, pi(z). The lower envelope can also
be thought of as a minimal sequence of pairs (z;j,i;),
t=1...m where z; < 2 < s, Tg = —00, Ty = 00
such that F(z) = p;;(z) for z;_, < z < z;.

Calculating the lower envelope involves finding these
pairs, which describe where the lower envelope switches
from being one parabola to another. The lower envelope

is of interest because it describes the closest pair among
a set of points moving with constant (but different) ve-
locities [1].

The known algorithm for constructing the lower enve-
lope is an O(nlogn) divide-and-conquer one. The dif-
ficulty with developing an incremental algorithm is the
same as it was in the case of circles; it is not difficult to
construct a set of parabolas such that the total number
of changes that occur during the incremental construc-
tion is ©(n?).

In what follows we show that if the parabolas are ap-
propriately sorted and then added incrementally, then
each new parabola can cause at most 3 changes, in the
amortized sense. This will yield an O(n logn) incremen-
tal algorithm for constucting the lower envelope. The
algorithm is very much like the one for constructing the
convex hull of circles developed in the previous section.

We say that p; < p; if (ai, bs,¢i) < (aj,bj,¢;) in the
lexicographic sense, i.e. a; < aj, or a; = aj and b; < b;
or a@; = aj, b; = b;j and ¢; < c;. Assume then that the
parabolas have been sorted so that py < ps < --- < p,.
Let Fi(z) = minj<;p;j(z) be the lower envelope of the
first ¢ parabolas.

We first prove an analogue to Corollary 3.

Lemma 5 Parabola p;y, can only intersect Fi(z) at at
most two points. Thus piy1 can coniribute at most one
arc to Fiy1(z) = min(pi+1(z), Fi(z)).

Proof.

If z is negative enough then p;(z) < pi(z) for all i <
J. This follows from the lexicographic ordering of the
parabolas. Thus there is some X such that Fi(z) <
Pi+1(z) for all z < X.

If, for all z, Fi(z) < pi+1(z), then the lemma is true.
Otherwise let z; = min{z : Fi(z) = pi+1(z)} be the
leftmost intersection of the old lower envelope with the
new parabola. At £ = z; the parabola p; switches from
being above F; to being below it. Let z = min{z >
z1 : Fi(z) = piy1(z)} be the next intersection of the
two curves. (If there is no such second intersection then
the lemma is obviously true — this may only occur if
ay=az=---=0Gi41.)

Let p; be the parabola such that Fi(z2) = pj(z3).
Then at £ = z, the parabola p;,; switches from be-
ing below p; to being above it. This implies that
P(22) < Py (22). Since p(z) = a5 < aig1 = plly; (2)
this implies that for all z > z3, pj(z) < pi;,(z) so
Fi(z) < pj(z) < pit+1(z). This means that z; and z,
are the only intersection points of p;;; with F; so Dit+1
can only contribute at most one arc to Fiqr.

This lemma states that each new parabola may add at
most one arc to the lower envelope. There are two cases.
The first is that this new arc intersects two different arcs
on the old lower envelope. In this case it might also cover
(be below) some old arcs, removing them from the lower
envelope. The two ends of the new arc will cut off the
previously existing ends of the arcs that they intersect

157
on the lower envelope. The second case is that the new
arc is totally below one previously existing arc; in this
case the old arc is destroyed and replaced by two arcs,
one from each of its ends.

Counting the changes implies that each new parabola
can only increase the number of arcs on the lower en-
velope by 2, providing another proof that the maximum
numbrer of arcs on the lower envelope is < 2n — 1 (the
standard proof is a Davenport-Schintzle one). It also
proves that the total number of arcs that will ever appear
during the incremental construction (counting modified
arcs as new arcs) is < 3n — 2.

The incremental algorithm is almost the same as it
was in the circular case. First, sort the parabolas in in-
creasing lexicographic order in O(nlogn) time. Then,
incrementally add the parabolas to the current lower en-
velope . At stage i we assume that the breakpoints z; of
the current envelope F; are stored in the internal nodes
of a balanced binary tree along with the indices i;.

To proceed we need the following analogue to Lemma
4.

Lemma 6 Suppose that p; < p; in the lezicographic or-
dering and p;j(z) < pi(z) for some z. If p; intersects p;
twice (which is the most it can do) then the intersections
points must either both be to the left of x or both to the
right of x.

Proof. Obvious from the geometry. a

We now walk down the binary tree searching for a
point z such that p;41(z) < Fi(z). If we can not find
such a point this will prove that no such point exists
and F; = Fiy.

Start at the root. For each internal node v visited
take the breakpoint z; associated with it and test if
pi+1(z;) < Fi(z;) = pi;(z;). If it is we report z; and
stop. Otherwise we check which of the following three
possibilities occur and take the appropriate action: (i)
pi never intersects p;.. Stop the procedure reporting
that F; = Fiy;. (ii) The intersection point(s) z where
pi(z) = pi;(z) is/are to the left of z;. Then go to the left
child of v and continue. (iii) The intersection point(s) =
where p;(z) = pi;(z) is/are to the right of z;. Then go
to the right child of v and continue.

If we ever reach a leaf of the tree we have reached a
breakpoint z; such that if p;;; intersects F; it must do
so on the arc between r; and z;4;. If they do intersect
report an intersection point, otherwise report that F; =
Fiqa.

This procedure takes O(logn) time and either tells us
that F; = Fj4, or reports a point z such that pi+1(z) <
Fi(z). This point z is on the unique arc of p;;; which_
is added to the new lower envelope. Given z we can
therefore walk to the left and right in the tree deleting
all arcs that have to be deleted (they form a chain) in
time proportional to d;logn where d; is the number of
deletions that need to be performed. After finishing we
find the endpoints of the new arc that has to be added

158
and, in O(logn) time, add it to the tree along with the
two new (modified) arcs that that it abuts.

Since), d; < 3n — 2 the total running time of this
algorithm is. '

(0] (n logn + Z d; Iogn) = O(nlogn).

5 Conclusion

In this paper we developed incremental algorithms for
constructing the convex hulls of circles and lower en-
velopes of axis-parallel parabolas in O(n logn) time. We
did this by showing that, if the circles/parabolas are in-
crementally added in a special order, the geometry of
the problem ensures that there won’t be many changes
at each step and each change can be easily found.

One major open problem in the area is the devel-
opment of an online algorithm for solving these prob-
lems, e.g, given a set of non-sorted circles, construct the
sequence of convex hulls CH(S;), finding each convex
hull in time ‘proportional’ to the number of structural
changes needed to transform CH(S;-;) into CH(S;),
e.g, O(d;log?).

We should also mention that the techniques that
we describe also yield O(nlogn) incremental time al-
gorithms for finding the lower envelope of circles and
the convex hull of axis-parallel parabolas (where each
parabola p; is considered as representing the set {(z,y) :
y > pi(z)}.) We do not go into details because these
problems do not seem to be of much interest.

Acknowledgement: The authors would like to thank Siu-
Wing Cheng and Jacqueline Duquesne for comments and
conversations that contributed to this work.

References

[1] M. Atallah, “Some Dynamic Computational Geome-
try problems,” Comp. and Maths. with Applications,
11(12), 1985, 1171-1181.

[2] J.-D. Boissonnat, A. Cérézo, 0. Devillers, J.
Duquesne, and M. Yvinec “An algorithm for construct-
ing the convex hull of a set of spheres in dimension d”
Proc. 4th Canad. Conf. Comput. Geom. 1992, 269-273.

[3] D. Rappaport" “A convex hull algorithm for discs, and
applications,” Comput. Geom. Theory Appl, 1 (3), 1992,
171-181.

