165

Hierarchical Delaunay Triangulation

J-M. Moreau (moreau@emse.fr)
E.M.S.E., 158 Cours Fauriel, 42023 Saint-Etienne, France

Extended Abstract

This paper presents the generalization of a formerly pub-
lished divide-and-conquer algorithm for constructing the
Delaunay Triangulation of a planar graph. This general-
ization allows to triangulate portions of a graph, considered
as logical and separate entities, as for instance the polyg-
onal faces in a hierarchically organized graph. This is an
improvement over all previous constrained Delaunay tri-
angulation algorithms, in the sense that the triangulation
of vast databases may be split into hierarchical subtriangu-
lations in an autonomous way. The algorithm is optimal
and may be applied to various other structures.

1 Introduction

Several optimal algorithms have been published for con-
structing the Constrained Delaunay triangulation of a pla-
nar graph G (refer to the survey by F. Aurenhammer [1]).

In many applications (e.g. flight simulators, GIS sys-
tems, etc.), such planar graphs may be thought of as repre-
senting terrains, in which faces (fields, roads, rivers, cities,
...) are frequently arranged in nested sequences. In such
contexts, it is often important to construct the constrained
Delaunay triangulation of faces independently (e.g. need
for local refinements, distributed tasks, etc.).

This paper presents an optimal divide-and-conquer al-
gorithm for performing such local tasks, which will here-
after be called “hierarchical (Delaunay) triangulations”. It
is organized in the following way: Section 2 gives a formal
definition of the hierarchical Delaunay triangulation, and
presents previous research of interest. Sections 3 presents
the structures and the various mechanisms required by the
algorithm. Section 4 presents the divide-and-conquer al-
gorithm for constructing the Delaunay triangulation of a
hierarchical graph, and Section 5 concludes on future work.

2 Hierarchical triangulations, and pre-
vious work

Let G = (E, S) be a planar graph with S a set of N vertices
(also called sites). Since the number of edges in E is at
most 3N — 6, it makes sense to say that the graph is of
size O(N). Two sites in G are mutually visible iff the line
segment between them intersects no edge in the graph,
except possibly at endpoints.

The Delaunay triangulation of G is a maximal planar
graph, in which each (triangular) face Apqr has the “con-

strained Delaunay circle property”: The circle through p,
¢, and r contains no other site of S visible from all three.
Such a structure is unique iff no more than three sites in
S lie on the same circle of empty interior. If the set of
edges in the graph is empty, this property coincides with
the standard “Delaunay (or empty) circle criterion”: The
corresponding circumscribed circle has no other site of S
in its interior. The edges of the standard Delaunay tri-
angulation of a set of sites are called Delaunay edges, as
opposed to the “graph edges” that are to be found in the
constrained version of the problem.

The construction of the constrained Delaunay triangu-
lation of a graph takes time proportional to Nlog N. In
fact, this problem has the same asymptotic complexity as
the construction of the (standard) Delaunay triangulation
of a set of points in the plane, which was first solved in
optimal ©(N log N) time by Lee and Schachter ([10]). See
also the article by Guibas and Stolfi ([6]).

Various papers have been written on the important sub-
Ject of constrained Delaunay triangulations. The first op-
timal ©(N log N) algorithm was discovered by Paul Chew
([2]) in 1987. Steven Fortune then published an optimal
sweep-line algorithm for constructing the standard Voronoi
diagram of a set of points in the plane ([5]) which may
be applied to the construction of the bounded Voronoi
diagram. Raimund Seidel then unified the notions of
bounded and constrained Voronoi diagrams in a seminal
paper ([13]). In 1993, the author and Pascal Volino sug-
gested in [11] a new version of Chew’s algorithm that rid-
ded the latter of all the rather restricting and cumbersome
hypotheses needed for its justification.

2.1 Hierarchical graphs

Both divide-and-conquer algorithms in [2] and [11] con-
sider the triangulation of the graph relatively to its natural
implicit external face: The boundary of its convex hull. If
such a graph is presented as data to the new algorithm, it
will perform the same task as described above.

However, the natural input for the algorithm in this
paper is a hierarchical graph, that is: A planar graph rep-
resented by a finite union of disjoint connected components
of the form (P;, V;, E;, H;), where each P; is the polygonal
boundary of the i-th connected component, V; is a set of
vertices, E; a set of edges, and H; is a (possibly empty)
hierarchical graph, all of which constituting a planar sub-
graph entirely contained in the interior of region P;. The

166

Vi’s and Ei’s (Hi’s) will also be referred to as the “ele-
ments” (“holes”) of the Pi’s.

The elements are either isolated vertices (e.g. altimetric
information), isolated edges or chains of edges (e.g. plani-
metric information). Such edges will also be called “con-
straints” in the sequel. Holes are recursively defined as hi-
erarchical subgraphs. They may, for instance, be thought
of as representing imprints of houses, buildings or complex
objects, the faces of which are to be obtained by means of a
specialized external 3-D modeller. Note that holes may be
empty regions or not, depending on the application. The
algorithm successfully handles both cases, naturally.

For the sake of conciseness, we shall only consider here
the case of a hierarchical graph G = (P,V, E, H), with one
single connected component, P, and empty holes. All that
will be said applies directly to the more general definition.

A first step towards the Delaunay triangulation of a
hierarchical graph was made by Lee and Lin ([9]) who
presented, in 1986, a (non-optimal) divide-and-conquer
method for constructing what they called a “Generalized
Delaunay Triangulation” (i.e. the constrained Delaunay
triangulation of a graph). Lee and Lin also detailed a spe-
cialized version of their algorithm that applies to the De-
launay triangulation of a simple polygon, and that works
in O(Nlog N) time. This algorithm — which is rather in-
volved and requires computing visibility polygons in the
merge phase — does not generalize to the hierarchical case
described above. Namely, the presence of holes, graph
edges, chains or vertices cannot be taken into account in
their algorithm without increasing the overall O(N log N)
asymptotic running time.

Finally, let us note that all the general algorithms for
the constrained Delaunay triangulation of a graph men-
tioned in the preamble of this section could be applied to
the problem at hand: It would be sufficient to triangulate
the whole graph (P, its elements and holes) relatively to its
convex hull and then to delete from the list of faces those
that would not be relevant. However, this technique is not
very well suited here, since a lot of work would be necessary
to create irrelevant simplices and then to destroy them! It

" would be even more detrimental to resort to this solution
if the number of holes were important (relative to the size
of the external polygon), a rather frequent situation in the
applications mentioned in the introduction.

3 Structures and mechanisms

3.1 Pseudo polar angles

Consider the directed edge AB of Figure 1, and define
d: = zp—1za,dy = yB —ya. It is possible to assign to any
such half-edge a unique real number in]0,4] - called its
pseudo polar angle (ppa) — that behaves like the true polar
angle (cf [12], page 353). For instance, for all endpoints
B in the first (North-East) open quadrant of Figure 1, the
pseudo polar angle of AB is a real number in]1,2[, given
by 1+ 2-,‘-"1—. Similar expressions may be found for edges in

+d
the other tru:ee quadrants, and the special cases of vertical

Figure 1: Pseudo polar angles for half-edges.

and horizontal directions are dealt with by straightforward
inspection of dz and dy. Note that the origin for pseudo
polar angles (0) is actually represented by 4, for practical
reasons.

3.2 Planar Maps

A number of solutions have been suggested for represent-
ing planar graphs, among which the planar map ([3], [8]),
which allows all the operations required by the algorithm
at minimal cost, although other well-known structures
would be eligible.

Suppose that the hierarchical graph G has Np vertices
on its external boundary, contains Nvg vertices (including
isolated vertices and the endpoints of constraint edges in
its subgraph, excluding holes), and h (empty) holes, the
boundary of which are composed of Ny vertices. Then,
the total number of edges in any triangulation of G - and
hence, in its constrained Delaunay triangulation - is ex-
actly:

Ng=2Np+3Nve +2Ny+3h -3

In the context of planar maps, the basic structure for half-
edge AB (going from A to B) is a pointer to vertex B, a
pointer to the next CW half-edge around A, and one to
the next CCW half-edge around A. If we allocate an array
of M = 2N cells for such edges, and if edge AB is located
in this array at index i, its “dual” edge BA is implicitly
located at index ®ar(s) = M —i. This involution allows
to locate dual edges implicitly (without storing an explicit
pointer for them in the basic data structure). The total
space required for storing the constrained triangulation of
the hierarchical graph G with Ng edges, is therefore 2Ng x
3 X 4 = 24Ng bytes on 32-bit machines.

3.3 Synchronized plane sweep

A balanced-tree structure (AVL), already present in ([11]),
will be used in the new algorithm, in co-ordination with
the recursive divide-and-conquer process. Suppose all the
vertices in the planar graph have been sorted in increas-
ing zy-order. The basic idea behind using an AVL is that
the leaves of the divide-and-conquer recursion tree are the
vertices themselves, and are visited in their increasing lexi-
cographical order. Hence, the updation of the planar map,
which will eventually capture the structure of the final tri-
angulation, may be done using a balanced tree structure
for sweeping the plane, to be updated at the bottom of
every recursive call in the following fashion.

3.4 A scheduling mechanism for edges

As a preliminary step, all the graph edges are inserted, one
at a time, in a priority queue, PQ*, built for instance on
the leftist tree model ([7], [4]), and allowing constant-time
extremum search, and optimal logarithmic time insertion
or extremum extraction.

Think of this priority queue as dedicated to inserting
half-edges “originating from their lexicographical leftmost
endpoint”. Clearly, all such half-edges have a pseudo polar
angle in]0, 2], exclusively. (A directed edge AB with ppa 4
is half-edge BA with ppa 2.) Since the graph is assumed to
be planar, it is impossible for two distinct half-edges with
identical origin to have the same pseudo polar angle.

Consider two edges e1 = [A1, B1],e2 = [A2, By}, with
A1 < By, and Az <1 B; (< = lexicographical order).
The order relation ruling PQ+ is designed to let half-edges
with smaller lexicographical leftmost endpoints go first,
and in case of ties, those with smaller pseudo polar angles,
as summarized in the following routine:

PQ*0rder(ey, e32)

if ((za, < z4,)) return “e; comes before ¢;”;

if ((za, > z4,)) return “ez comes beiore ¢,”;

if ((y4, < ya,)) return “e; comes before ¢;”;

if ((ya, > ya,)) return “e2 comes before e;”;

if (ppa(e1) < ppa (e2)) return “e; comes before e,”;
if (ppa(e1) > ppa (e2)) return “e; comes before ¢;”;
return “e; == ey”;

After insertion of all G-edges in the “origin” priority
queue PQ* using this comparison procedure, the root of
the associated leftist tree will at any time contain the
less slanted half-edge originating from the lexicographi-

cally leftmost left-endpoint in the graph that has not been .

processed yet.

If we use another similar priority queue PQ™ for storing
the half-edges considered as ending at their lexicograph-
ically rightmost endpoint, and if we use PQ~Order, a
“dual” version of the previous comparison routine applied
to the rightmost endpoint of such edges, it is possible, each
time an edge is being extracted from PQ*, to insert its
dual in PQ~, the root of which will hold, at any time,
the most slanted half-edge ending at the lexicographically
leftmost, yet unprocessed, right-endpoint in the graph.

Thus, for each successive vertex v encountered at a leaf
of recursion in the algorithm:

1. All half-edges ending in v (if any) are extracted (in
decreasing polar angle) from PQ™, removed from the
AVL, inserted in the planar map representing the tri-
angulation, and the space they previously occupied in
the queue is returned to the system. ’

2. Then all the half-edges originating from v (if any) are
extracted (in increasing polar angle) from PQ*, in-
serted in the plamar map, and their duals are inserted
in the AVL and in PQ™.

167
3.5 Marking angular sectors

Imagine an observer moving from —oco towards 400 on a
virtual vertical line separating two strips being merged in
the algorithm. To find out whether this observer is cur-
rently standing inside one internal face of the hierarchical
graph or not, it suffices to count the number of non-vertical
boundary edges below him or her. (Vertical edges at the
exact vertical of the observer and below may be omitted,
as they convey no information w.r.t. inclusion.)

For readers not familiar with the algorithm in [11], let
us say that it selects a privileged graph-edge for each vertex
in the graph. Such an edge is called a “floor edge” for v,
in the sense that it is the first edge in the graph hit by
a vertical line drawn from the vertex towards —oco. The
algorithm then comstructs alternating sequences of such
edges and subtriangulations (pieces), called “strips”.

The virtue of only considering floor edges for succes-
sive pieces in a strip is to remove from the current merge
any crossing graph edge that stands no chance of being
made captive (at either end) in either subtriangulation
during the merge phase. The main disadvantage of this
is to remove from the process potentially many such cross-
ing graph edges, and thereiore to stop the algorithm from
knowing exactly how many boundary edges the merge pro-
cess has already passed, coming from y = —oo.

Fortunately, the AVL structure carries enough informa-
tion to solve this problem. Let us attach to every node in
the AVL a boolean field indicating the parity of the number
of boundary edges contained in the nodes in its subtrees,
and including the possible boundary edge it represents (ex-
plicitly excluding non-boundary edges). Vertical edges be-
low one given vertex v are no problem, since they have all
already been removed from the A VL as recursion reaches v.

Maintaining such a boolean field in the case of a stan-
dard binary tree is straightforward: Suppose we are adding
one boundary edge to either subtree of node z. Then its
new parity field is simply negated, and the process is re-
cursively applied to the traversed subtree. Of course, if
the newly inserted graph edge is not part of a boundary,
mo parity field updation should be made.

In the case of an AVL, things are a little bit more dif-
ficult. We shall limit ourselves to one case, since all other
Cases are symmetrical, and double rotations are composi-
tions of two single ones. Thus, referring to Figure 2 where
the figures indicate balance status, suppose z is the last
“unbalanced” node (with balance -1, meaning the AVL
has a heavier right subtree at z) on the insertion path of
a new boundary edge; suppose further that this edge has
just been inserted in the right subtree (with root z) of the
right subtree (with root y) of node z. Re-balancing the
AVL will terminate with a single left rotation around z.
Denote by u® the parity field of any non-empty AVL node
u, by ~ the XOR operator, and by (B(u)?) the test yielding
true iff the edge contained in node u is a boundary edge
in G.

After the rotation, the parity fields of the black subtrees
on Figure 2 remain unchanged, those of z and its right

Figure 3: Inside/Outside testing using the AVL.

subtree (both shaded) must be negated, and then those
for nodes z and y may be computed in constant time, in
the following order and fashion:

2®=LS2" LS:* (B(z)?), 9 =z""z""(B®y)?).

It is straightforward to infer from the parity fields of its
subtrees and from its own, how to “interpret” the graph
edge in any given node. For instance, the node at the root
of the AVL in Figure 3 has an even parity field, and so have
its two subtrees: It must hold a plain graph edge, and lie
in the external face of the hierarchical graph. @ When
the merge process reaches vertex v, it is possible to find
out, in logarithmic time, whether it lies inside or outside
the hierarchical graph, excluding the possible boundaries
attached to it: Locate this vertex in the AVL, and infer
the status of v from the parity field information collected
on the search path (bold on Figure 3) from the root to the
nearest floor edge below it.

Knowing where v lies in the graph, all the angular sec-
tors from the planar map around v may now easily be
assigned a unique boolean InOut label: Referring to Fig-
ure 4, start from the vertical direction (known to be “In”
on the figure) in the so far empty adjacency list of v in the

Figure 4: Marking the angular sectors around v.

planar map. Using a boolean variable, InOut, initialized
to the InOut value found for v, one edge ending at v must
first be removed from the AVL. Hence, a directed edge
must be created in the planar map, as first element in the
adjacency list around v. This edge is labelled In, meaning
an observer crossing this edge in the CCW direction will
move into one face of the hierarchical graph. Each time
a boundary edge is to be removed, InOut is negated, and
the corresponding directed edge in the planar map is given
this new InCut value.

Next, edges originating from v must be treated in a
similar fashion, after winding InOut back to its initial value
(In in our case), after which both (possibly empty) semi
adjacency lists may be chained into one, in constant time.

4 A divide-and-conquer method for hi-
erarchical Delaunay triangulations

Using all the structures and mechanisms in the previous
section, and assuming the reader is familiar with the al-
gorithms in (2] and [11], here is the outline of the new
method:

1. Sort the vertices of the graph (including those of its
elements, and holes boundaries) in lexicographical or-
der, and arrange them in a “list” L;

2. Arrange all the input half-edges in a priority queue
PQ*. Initialize the AVL A, the second priority queue
PQ~, and allocate the planar map array PM, to or-
ganize the resulting triangulation.

3. Recursive step on L. Output is strip o, a linked list
of “pieces”.

(a) If L is reduced to a unique vertex v:
Locate the nearest G-edge, say e, at the verti-
cal of v (if any), and deduce InOut value for v.
Extract from PQ™ (and A) all half-edges end-
ing in v, insert them in PM, and set their InOut
values on the fly.
Extract from PQ* all half-edges originating
from v, insert them in PM, and set their InOut
values on the fly. Insert their duals in A, and in
PQ-.
Return the linked list strip o composed of piece
¢y (if not empty) followed by piece v.

(b) Else: Divide L into two equally-sized, linearly
separable lists Li, L,; recursively “triangulate”
L; and L, into oy and oy;

Merge step: Let x; and . be the current pieces
in the left and right strips o1, o, respectively.
While (x; and . # 0):
i. If (wm is “In”):
A. If (= is “In”):
All resulting Delaunay edges and their
duals are to be inserted in the planar
map, with the appropriate InOut label.
Match or/and triangulate x; and x, as
in the merge phase of [11).
Append all relevant resulting pieces to
o; Move on to next piece in oy and/or
o, accordingly.
B. Else: Move on to next piece in o,.
ii. Else: Move on to next piece in oy;

Comments

It is important to only merge-and-triangulate pieces that
may see each other in the graph. See Figure 5 for an il-
lustration of this, and also note that merging two pieces
requires that they are “synchronous” (case 3.b.i.A), which
may only be ensured by “passing” pieces that do not
match. As we have seen, the planar map contains suf-
ficient information to settle this matter. Thanks to the
Jordan lemma, the InOut label for two oriented edges rep-
resenting the pieces to be merged must match, and it takes
O(1) time to find out whether the merge should produce
edges between both pieces or not. If either InGut label is
found to have an “Out” value, the merge process should
simply move on to the next piece in the same strip.

169

Figure 5: Merging two hierarchical pieces: Fill the gap
between both pieces in the topmost case, and move on
to the next piece in each strip in the other.

Otherwise, the merge process is identical to its homo-
logue in the standard algorithm, except regarding the fol-
lowing important details:

1. When a new Delaunay edge and its dual are created,
their associated InOut label must also be given the
appropriate values, so that, for instance, two internal,
mutually visible, and graph-edge free pieces may be
merged appropriately.

2. Elements (vertices or edges) that are found - during
stage 3.a — to lie entirely outside the graph should
be removed from the process, as it would be impossi-
ble for it to assemble such items into coherent pieces.
This is akin to saying that mutually invisible edges
such as those at the bottom of Figure 5 are each sep-
arately assembled into the planar map with the help
of their respective internal colaterals.

3. When the interior of one isolated connected compo-
nent of the graph has just been completely triangu-
lated, its associated strip should simply be removed
from the process, and appended to a specially dedi-
cated list of triangulated connected components, for
later retrieval.

The overall running time of the new algorithm is the same
as that of the original algorithm, ©(N log N), if N is the
size of the graph. This is partly due to the fact that “mu-
tually visible” sections to be merged are processed in a
similar fashion, and that sections that fail to be visible are
detected and then dealt with in constant time. Note that
otherwise “synchronizing” two such sections could not be
guaranteed to be a linear-time process! The scheduling
mechanism for edges has the same complexity if one uses
dynamic priority queues, and the manipulations related to
the AVL have been shown to remain logarithmic. The sub-
sequent insertion of each graph edge in the planar map is
a constant time process.

170

...........

...........

3
E

{
D

...........

...........

/
¥

Figure 6: Fitting 3 data structures into a fourth one.

Interestingly enough, the three data structures used in
the algorithm may peacefully coexist in the planar map
array described in Section 3.2: First, noting that there are
NGe < NEg graph edges in the final triangulation, PQ~
may simply be implemented by pre-sorting the “ending”
half-edges in and arranging them in decreasing ry-ppa or-
der, as described in 3.4, from the higher to lower array
indices in the planar map array (see Figure 6). This im-
poses the position of their duals at the other end of the
array, thanks to the implicit involution ®»s. The succes-
sive minimums of PQ~ may thus be later retrieved by a
simple scan of the higher section of the array.

Now consider the Edge structure, and let Edge
*1inks[2] be its two self-referencing links. These may
also be regarded as pointers to the left and right sons of
a binary tree structure! Both the AVL and the leftist tree
structures require an integral field which may also easily
be provided for through some bit field in the generic Edge
data structure.

Hence, it is possible — using this scheme - to maintain
the first priority queue PQ* in the low section, and the
AVL in the high section of the planar map array. This is
possible because both structures leave elements in place,
and only rearrange pointer links! Thus, the space required
for the algorithm is exactly that of the allocated planar
map array.

5 Conclusion

In this paper, an optimal divide-and-conquer algorithm for
constructing the Delaunay triangulation of a hierarchical
graph has been presented. It is based on a previous algo-
rithm for the Delaunay triangulation of a standard graph.
Clearly, there is no obstacle for applying the underlying
paradigm to the divide-and-conquer construction of other
important structures, such as the Constrained Voronoi Di-
agram or the Medial axis of polygons with holes (see [1]).

It is still an open problem to know whether such a
paradigm may be applied to more difficult questions, such
as the triangulation of graphs on complex surfaces in space.
Research in these fields should have a great impact in
CAD (Delaunay triangulation of unions of Bezier patches
or parametric surfaces), or other geometric applications,
such as GIS.

Another very important unsolved problem is the design
of a divide-and-conquer O((N + k)log N)-time algorithm
for the ordered detection of all k intersections between a set
of N planar segments. Clearly, such an algorithm would
be most beneficial in the preparation of data for large scale
applications, since it could be naturally coupled with the
divide-and-conquer scheme described in this paper.

Acknowledgements The author wishes to thank P.
Volino for invaluable discussions during his stay at EMSE,
and for his first implementation of the constrained Delau-
nay triangulation algorithm that gave me the courage to
get into this.

References

[1] F. Aurenhammer. Voronoi diagrams — A survey of
a fundamental geometric data structure. ACM Com-
puting Surveys, 23(3), September 1991.

[2] P. Chew. Constrained Delaunay triangulations. Al-
gorithmica, 4:97-108, 1989.

[3] R. Cori. Un code pour les graphes planaires et ses
aprlications. Astérisque, (27), 1975.

[4] C. Crane. Linear lists and priority queues as balanced
binary trees. Technical Report CS-72-259, Dept of
Computer Science, Stanford University, CA, 1972.

[5] S. Fortune. A sweep-line algorithm for Voronoi dia-
grams. Algorithmica, 2:153-174, 1987.

(6] L.J. Guibas and J. Stolfi. Primitives for the manip-
ulation of general subdivisions and the computation
of Voronoi diagrams. ACM Transactions on Graphic,
4:74-123, 1985.

[7] E. Horowitz, S. Sahni, and S. Anderson-Freed. Fun-
damentals of Data Structures in C. Computer Science
Press, New York, 1993.

[8] A. Jacques. Constellations et graphes topologiques.
In Combinatorial Theory and Applications, pages
657-673, Budapest, 1970.

[9] D.T. Lee and A.K. Lin. Generalized Delaunay trian-
gulation for planar graphs. Discrete Comput. Geom.,
1:201-217, 1986.

(10] D.T. Lee and B.J. Schachter. Two algorithms for
constructing a Delaunay triangulation. International
Journal of Computing Information Sciences, 9:219-
242, 1980.

[11] J-M. Moreaun and P. Volino. Delaunay triangulation
revisited. In Proceedings of the 5th Canadian Confer-
ence on Computational Geometry, Waterloo, Canada,
August 5-9, 1993,

[12] R. Sedgewick. Algorithms in C. Addison-Wesley,
Reading, Mass., 1990.
[13] R. Seidel. Constrained Delaunay triangulation and

Voronoi diagram with obstacles. Techmca.l Report
260, IIG-TU Graz, Austria, 1988.

