225

Limited Gaps

Karen Daniels *

Victor Milenkovict

Center for Research in Computing Technology
Division of Applied Sciences
Harvard University
Cambridge, MA 02138

1 Introduction

For the past few years, we have been engaged in a
project on automatically generating layouts for the ap-
parel industry. A layout or marker is a non-overlapping
placement of clothing pattern pieces (polygons) on a
rectangular strip of material of fixed width. The task is
to find the optimal (minimum length) layout. Marker
making is NP-hard, and it is important to decompose
the task as much as possible for the sake of running time,
even if that means finding only a near-optimal layout.

Pants pattern pieces fall into two distinct groups: large
panels and smaller trim pieces. One decomposition
strategy is to first place the large panels and then place
the smaller trim in the unused regions of material among
the panels. The length of the final layout is determined
by the panel placement. Humans employ this strat-
egy, and they appear to obtain near-optimal layouts for
pants.

After the panels are placed, the shape of the unused
material has great complexity in terms of connectivity
and number of edges. The human eye naturally decom-
poses this material into gaps of significant area. This
second decomposition is also essential to reducing the
time required for the layout. This paper describes our
efforts to give a sound mathematical basis and a set of
algorithms to accomplish this decomposition. We call
each resulting region a limited gap.!

1.1 The Trim Layout Task

In the trim layout problem, trim is a set of (possibly
nonconvex) polygons P = {p1,pa,...,pr} to be packed

*This research was funded by the Textile/Clothing Technology
Corporation from funds awarded to them by the Alfred P. Sloan
Foundation.

tThis research was funded by the Textile/Clothing Technol-
ogy Corporation from funds awarded to them by the Alfred P.
Sloan Foundation and by NSF grants CCR-91-157993 and CCR-
90-09272.

!Later we noticed the double connection of the name to the
retail side of the apparel business.

into a nonconvex polygonal container C, usually with
multiple components (see Figure 1), resulting from sub-
tracting the panels from the rectangle of material. The
goal is to fit as many items as possible into the container.
This is an NP-hard problem, and is a generalization of
2D bin packing, where the rectangles (bins and items)
are now allowed to be nonconvex polygons, and the bins
need not be identical (each bin corresponds to a com-
ponent of the container polygon). Assuming, P # NP,
the cost of filling a container is exponential in k. We
assume here that only translations on the elements of p
are allowed.?

1.2 Decomposing C into Gaps

In its undecomposed form, the container set C is the
complement of the set of obstacles in a rectangle of ma-
terial. To improve tractability, we need to find a gap
set G = {g1,92,...,9n} with the containment property:
if p € P is placed inside C, then it is contained en-
tirely inside some g € G. The use of a gap set greatly
improves the tractability of the layout task: it is usu-
ally possible to perform the layout by packing individual
gaps. Smaller gaps and more gaps are desirable; overlap
among gaps is undesirable.

The set of connected components of C has the contain-
ment property, but it usually has too few elements to
improve tractability much in practice. We will define a
set Rp C C called the reachable region of P. The con-
nected components of Rp form a much better gap set
than C, but it still is often insufficiently decomposed.
However, it is the largest cardinality gap set we know
of with non-overlapping gaps.

If we permit gaps to overlap, then it is possible for poly-
gons placed in different gaps to overlap. However, if
we construct the gaps properly, then the probability of
overlap will be small. We will give a rigorous notion of
this probability. Further, for any given probability =,
we will show how to construct a gap set, called limited

2In practice, some discrete orientation changes (reflections and
rotation by multiples of 90 degrees) are also allowed.



226

gaps, such that the probability that pieces in different
gaps overlap is less than 7.

There is a tradeoff between the number and size of gaps
and the probability. Many small gaps are easier to fill
with trim pieces,® but the probability of overlap be-
tween trim pieces in different gaps is higher. Since 7 is
a parameter to the construction of the limited gaps, we
allow the possibility of finding the best value of 7 in the
tradeoff.

1.3 Overview

Section 2 describes the container decomposition meth-
ods we experimented with before arriving at the notion
of the limited gaps. Section 3 defines the limited gaps
in terms of the probability = and gives an algorithm
for constructing them. Section 4 presents two methods
for improving the efficiency of limited gap construction.
These methods introduce the new concepts of breaking
polygons and inking polygons.

2 The Challenge of Construct-
ing Gap Sets

Before defining the limited gaps, we review the other
container decomposition methods we experimented
with.

2.1 Compaction

We have a compaction tool [4] which plans a motion for
the set of placed pieces under a set of applied “forces.”
We attempted to eliminate holes and narrow necks in
the container set by applying a leftward force to each
panel polygon. However, we found that this strategy
had three shortcomings: 1) it failed to close all the
narrow necks, 2) although the containers were simply
connected, unnaturally large regions still existed, and
3) contact detection suffered from numerical instabil-
ity. Through the use of a configuration space approach,
the compaction algorithm avoids the question of con-
tact detection in order to run quickly and numerically
robustly. However, in order to generate a good decom-
position, it was necessary to explicitly detect contacts,
and this proved to be numerically unstable. This insta-
bility was exacerbated by the apparel industry’s policy
of rounding polygon coordinates before saving them in
a data file.

3The problem is still NP-hard since we must also decide which
pieces go into which gaps!

2.2 Partitioning Squares

Our second attempt involved choosing a narrowness tol-
erance v. We formed a partitioning square with side
of length v and used this to partition containers. The
partitioning process was conceptually analogous to cen-
tering a partitioning square at each vertex of each ob-
stacle, and then removing those squares for which the
intersection with the set of obstacles is connected (see
Figure 2). The difficulties with this approach are: 1) it
introduces artifacts (pieces of squares) into the layout,
2) it fragments the containers in a way that leaves many
small regions which are not usable by the set of items
to be placed, and 3) choosing a universal v is inherently
impossible. The fragmentation issue can be resolved by
testing each region, but this is computationally expen-
sive. Choosing v is not possible because P does not
naturally give rise to a narrowness value. Adopting a
value corresponding to regions which no item can fit
through is insufficient, because an item might be able
to reach into an arbitrarily narrow neck from both sides,
thus making the neck usable (see Figure 3).

2.3 Other Methods

We considered other methods, such as computing a
Voronoi diagram of the obstacles, using edges of the ob-
stacles as sites [2]. However, such methods also rely on a
narrowness tolerance v, which is fundamentally flawed.

3 Limited Gaps

We first define the set of limited gaps for a container C
and a set P of polygons when P consists of congruent
copies of a single polygon p. Then we give a straight-
forward extension of the theory to multiple shapes.

3.1 Minkowski Sum

The construction of the limited gaps is based on polyg-
onal region set operations (union, intersection, comple-
ment) and the Minkowski sum. Given two polygonal

regions A and B, the Minkowski sum and difference are
defined,

A®B = {a+b|la€ A and b € B} A6B =49 B,

where overline denotes the set complement. These are
also called the dilation and erosion of A by B.

If we designate B + t to be the region B translated
by vector t, then A intersects B +t if and only if t €
A®—B. Here — B represents the “opposite” of B, —B =
{-b|b € B}. Similarly, the set of translations ¢ such
that B + ¢ is entirely inside A is A © —B.



We have developed and implemented robust and effi-
cient algorithms for set operations and Minkowski sums
of polygonal regions.

3.2 Valid Regions and Reachable Re-
gions

We start with a container C' which is the polygonal re-
gion resulting from subtracting a set of placed polygons
from a rectangle of material: The set V, = C© (-p) is
the valid region for p in C: the set of translations that
place p inside C. The set R, = V, @ p is the reach-
able region of p inside C: the set of points that can be
covered by some translated copy of p inside C.

A gap set Gr consisting of the connected components
of R, has the containment property (Section 1.2), and
the components have the added advantage of being non-
overlapping. Unfortunately, components of R, can con-
tain arbitrarily narrow necks. Ideally, each component
of R, is generated by a single component of V,. In fact,
dilation by p can blend together two components of V,,
for cases in which p cannot fit through a narrow neck of
C but two copies of p can touch if they reach into the
neck from different sides (see Figure 3).

By dilating each individual component of V, we can
create a gap set Gy with higher cardinality than Gg
and with no narrow necks. Unfortunately, these gaps
can be highly overlapping. The limited gap set will be
somewhere “in between” Gy and Gpg.

One advantage of R, is that it provides a nontrivial up-
per bound on the efficiency? of a layout with respect to
an item, as follows. The efficiency of packing copies of p
in C cannot exceed the ratio of area(R,) to area(C).
Most packing density bounds in the literature apply
only when the polygons of P are convex.

The area of R, can also be used as a criterion for judging
the placement of obstacles: larger R, is better. Thus,
the area of R, can also be used in a greedy layout algo-
rithm in order to choose a placement position for each
piece which results in the most usable space for the re-
maining unplaced pieces.

3.3 Defining Limited Gaps usin‘g Prob-
ability of Interference

Let v,v' C V, be two connected components. If v @ p
and v' @ p do not intersect, then we can independently
place copies of p into C using translations from v and
v’ without interference. If (v & p) N (v @ p) # 0,
then we need to compute a probability Prob(v,v’) that
(p+t)Nn(p+1t') # 0. We assume a uniform distribu-

4Efficiency is the ratio of used material to total area.

227

tion on the connected components of V},, so t € v and
t' € v’ are chosen uniformly. Assuming we can compute
Prob(v,v’), we can finally define limited gaps. Given a
probability , components v and v’ interfere with each
other if Prob(v,v') > 7. Partition the components of
Vo according to the transitive closure of the interference
relation into interference sets. Finally, dilate each inter-
ference set by p to generate a gap. The resulting set G
of gaps is the limited gap set for probability 7. There
are variations on this definition, but the point is that
one can select the probability 7 of interference for the
gap set.

We calculate Prob(v,v') as follows. For each t € v,
the set of t' € v/ such that (p+¢)N(p+¢t) # 0 is
((p+t)®(—p))Nv’, and the probability that this choice
of t results in interference is Prob({t}, v') = area(((p +
t) ® (—p)) Nv')/area(v’). The integral of Prob({t}, ")
over all t € v gives us Prob(v,v').

We do not have an exact algorithm for this integral,
but we can approximate it by sampling t € v. We can
improve the efficiency by sampling only the region v N
((v" ® p) @ —p) that can result in a non-zero value of
Prob({t},v'). After computing the average value of this
probability, we normalize by multiplying it by area(v N
((+' ® p) ® —p))/area(v).

Finally, if P contains multiple shapes, then we can sim-
ilarly define and compute Prob(v,v') for v C V, and
v' C V. Let Vp be the set of all valid region compo-
nents. We partition Vp according to interference. For
each partition set I C Vp, we dilate each component
v € II by the appropriate p € P, and then take the
union Uy eri(v @ p) to generate the gap corresponding to
II.

4 Efficient Computation of Lim-
ited Gaps

In order to efficiently construct the limited gaps, we
want to quickly partition the set of valid region com-
ponents into interference sets. We present two help-
ful partitioning techniques. The first technique involves
finding a breaking polygon: a polygon B that can be
translated to fit inside any p € P.> The second tech-
nique uses the notion of inking polygons: q inks p if the
reachable region of ¢ inside p is all of p. Section 4.1
discusses the breaking polygon technique. Section 4.2
introduces the more powerful concept of inking poly-
gons.

5We use the term breaking polygon because the reachable re-
gion (C © —B) @ B “breaks” C into smaller components.



228
4.1 Breaking Polygons

Let us denote the breaking polygon of P by B. To sim-
plify the presentation, we assume that each p € P has
its origin positioned so that B C p without translation.
Since B C p, it follows that V, C V.

We can use B to quickly group together valid region
components which might intersect each other. Clearly,
two components of V}, cannot intersect each other unless
they are in the same component of Vg. Furthermore,
since each connected component of V}, is entirely within
a connected component of Vj, the inclusion test consists
only of a point-in-polygon test.

Since we want to maximize the number of components
of V3, we want to maximize the area of B. Finding the
polygon of maximum area which can be translated to
lie inside of each p € P is an interesting open problem
which we do not solve here. In practice, we find the
maximum area axis-parallel rectangle (MAAPR) (see
[1]) of each p € P. We reposition each p so that its
origin is at the center of its MAAPR. We choose B to
be the intersection of all p € P. This guarantees that
B contains a rectangle with the minimum width and
minimum height of all the MAAPRs. This, in turn,
provides a lower bound on the area of the best breaking
polygon.

Unfortunately, the reachable region Rp of the breaking
polygon is not necessarily a superset of R, for each p €
P. Consequently, we are not guaranteed that if two
valid region components v; and v, € Vp are in different
connected components of Vj, then they do not interfere.
In fact, there can be a significant amount of interference.

4.2 Inking Polygons

We say polygon ¢ inks polygon p if and only if (p ©
(-9)) ®9) = p. A set of polygons @ is an ink-
ing set of a set of polygons P if, for every p € P,
Uge@((p© (—¢)) ® ¢) = p. An inking set is valuable
because Rq = UgeqR, is a superset of each reachable
region R, (recall R, = (C' © q) @ ¢, the reachable re-
gion of ¢ in C). Therefore, for p,p’ € P, if v C V, and
v’ C Vj are connected components, then v@p and v’ &p’
can intersect (and hence Prob(v,v') > 0) only if they
lie in the same component of Rg. Furthermore, since
v @ p either lies entirely inside or entirely outside each
component of Rg, we can simply perform a point-in-
polygon test of any point of v p. It is easy to generate
this point without computing all of v @ p.

For an inking set to be useful, Rg should not be too
much larger than Rp. On the other hand, Rqg should be
easier to compute. The first condition implies that we
desire the inking set whose smallest member has maxi-
mum possible area. The second condition implies that

we desire the inking set of minimum complexity (total
number of vertices). The inking set of maximal area is
the set P itself. The inking set of minimum complexity
is a single point, but if we specify non-zero area, then
this is an open question. We desire the answer to a
doubly open question: of the inking sets of minimum
complexity, find the one whose smallest member has
maximum area. The next section gives a lower bound
on the complexity of an inking set based on the notion
of a hitting set.

4.2.1 Hitting Sets

Let a, b, c be three consecutive vertices of some polygon
p € P such that angle abc opens into the interior of
p. If an inking set @ inks p, then there must be a set
of consecutive vertices a’b’c’ on some q € @ such that
angle a’b’c’ is a subset of abe: if ¢ is translated to place
b’ on top of b, then a’ and ¢’ are on or in the interior of
angle abc. We say that angle a’b’c’ hits angle abe.

We can map angle abc to an interval (arc) on the unit
circle by translating b to the center of the circle and
taking the arc in the interior of abc. Clearly, a’b’¢’ hits
abc if and only if its interval is a subset. We refer to
the set of angles or intervals of P as that set of arcs
generated by all triples of consecutive vertices abc of
polygons p € P.

Given a set of intervals on the unit circle, a hitting point-
set S is a set of points such that each interval contains at
least one point of S in its interior. Clearly the complex-
ity of @ is at least as great as the size of the minimum
hitting point-set of the angles of P.

Theorem 4.1 A minimal hitting point-set for n inter-
vals on the unit circle can found in O(n?) time. (The
total number of vertices in P is n.)

Proof: We first give an O(n logn) time algorithm for
finding the minimal hitting set for a set of intervals of
the real line. Then we show how to use this algorithm
as part of an O(n?) time algorithm for intervals on a
circle.

The first step in the line interval algorithm is to initial-
ize the hitting set H to . We then sort the intervals
by increasing x-coordinate of their right endpoints, and
process them in this order. For each interval 7, if H
contains a point that hits ¢, then we do not change H.
Otherwise, we add the right endpoint® of i to .

This algorithm runs in O(n logn) time because we sort
the intervals. It can be shown that each step of the
algorithm yields the minimal hitting set (for the current

6 Actually, to avoid degeneracy, we add a point just slightly to
the left of the right endpoint of :.



set of intervals) whose rightmost point is furthest to the
right.

Our algorithm for intervals on a circle first sorts the in-
terval endpoints, creating a set of 2n event points and
2n “sub-intervals” (between event points). The algo-
rithm has an outer loop which considers each of these
2n sub-intervals, in turn. We add a single hitting point
to a sub-interval, and thus we can eliminate from con-
sideration any interval that contains this sub-interval.
We can now cut the circle anywhere in this sub-interval
and then apply the line algorithm. This gives the min-
imal hitting set for this choice of sub-interval. After
considering all 2n sub-intervals, we know which choice
yields the minimum hitting set. We only have to sort
once, so the running time is in O(n?). u

We can generalize the notion of hitting point-set to
hitting interval-set: recall an interval of @ hits an in-
terval of P if it is a subset. Clearly, we can replace
each point in the hitting point-set by the sub-interval
in which that point lies. However, this might not yield
the hitting interval-set whose minimum length interval
is maximized. Since we do not want “skinny” inking
polygons (to avoid inking narrow necks of C), we want
to maximize this minimum angle. This will also tend to
maximize the minimum area of an inking polygon.

For a given arc length L, we can find the minimum
hitting interval-set whose members are of length L. We
can do this in O(n?) time using a modification of the
point-set algorithm. The algorithm on the line is exactly
the same, but “unraveling” the circle into a line becomes
more intricate. We do not give the details here. For
any given hitting set size h, we can do binary search
on the value of L to find the smallest value of L whose
minimum hitting interval-set is h or greater. Since L
can take on at most 2n(2n — 1) values, we only have
to run the O(n?) hitting interval-set algorithm O(lgn)
times.

4.2.2 Forming Inking Sets using Hitting Sets

Given the minimalsized hitting interval-set Q of h inter-
vals for P (with maximum minimum length L), we show

here how to construct an inking set consisting of a set -

of h isosceles triangles and a single square. The isosce-
les triangles ink regions near the vertices of P, and the
rectangle inks the remaining area. If A, is the mini-
mum complexity of the inking set, then this algorithm
yields an inking set of complexity 3Ami, + 4.

We first discuss the isosceles triangles. We associate
an isosceles triangle with each hitting set interval i as
follows. Consider the set S; of angles abc of polygons
p € P which are hit by i. For each angle abc, find the
maximum height of a “corner” isosceles triangle whose

229

top is b and whose sides are aligned with ba and bc such
that the triangle is in the interior of p. Let H; be the
minimum height over all vertices in S;. Now, form an
inking set polygon T; which is the isosceles triangle of
height H;/2 and top angle determined by i. T; can ink
a “corner” isosceles triangle for abc of height H;/2.

The size of the square s is constrained by two factors: 1)
the narrowest neck in P, and 2) the narrowest (and most
diagonal) angle in P. To treat the first constraint, we
build a Voronoi diagram of each polygon in P, under
the L; metric [3]. If we surround each site with the
largest square which fits, then s must be smaller than
the smallest of these squares. Let w; be the resulting
width. The second constraint requires that we calculate
wy = min(H; sin(a/2)/v/2) over all abc in P with angle
a and hitting interval i. The width of s is min(w,, wa).

5 Future Work/Open Problems

Currently, we approximate the area integral of
Prob({t},v’) for t € v via sampling (Section 3.3). Find
efficient algorithms for computing this integral exactly.

Given a collection of polygons P, find the translation ¢,
for each p € P such that the area of Nye p(p+1,) is max-
imized. This would yield the maximum area breaking
polygon (Section 4.1).

Section 4.2 gives several open problems relating to ink-
ing sets.

6 Acknowledgements

The authors acknowledge helpful suggestions made by
Murray Daniels, and programming assistance provided
by Harvard undergraduate Shiv Chatterjee.

References

(1] K. Daniels, V. Milenkovic, and D. Roth. Finding the
maximum area axis-parallel rectangle in a polygon.
In Proceedings of the Fifth Canadian Conference on
Computational Geometry, pages 322-327, 1993.

[2] S. Fortune. A Sweepline Algorithm for Voronoi Di-
agrams. Algorithmica, 2:153-174, 1987.

[3] D.T. Lee. Two-dimensional Voronoi diagrams in the
L, Metric. Journal of the ACM, 27:604-618, 1980.

[4] Z. Li and V. Milenkovic. The Complexity of the
Compaction Problem. In Proceedings of the 5th
Canadian Conference on Computational Geometry,
pages 7-11, Waterloo, Canada, 1993.



230

D W—— — ]
6 13 2 9
— T~ = T
7 12 L_\’__j 8
e N [
v 54“" 10 1 ;!
. /—-—N-%
15 ~ 4 "’/\ll 0 i

Figure 1: Trim Placement Task

Figure 4: Limited Gaps Example



