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Levels of Degeneracy
and Exact Lower Complexity Bounds
for Geometric Algorithms

Peter Hertling *

Abstract

Degenerate configurations cause great problems in
the implementation of geometric algorithms. This
paper provides a mathematical framework for the in-
vestigation of degeneracies, based on the observation
that degeneracy is discontinuity. It is shown that one
can define different levels of discontinuity and that
the level of a computational problem gives a lower
bound for the numnber of tests needed in a computa-
tion tree solving that problem. In many cases this
lower bound is exact. We illustrate the concept of
level by various simple examples from computational
geometry. We show that for most of the geometric
problems the level is in O(n). Finally we discuss the
computational problems caused by degeneracies.

1 Introduction

Usually a problem in computational geometry can
be formalized by a partial function f :C RM —
RN (we may assume IN C IR) or by a set of such
functions.

The standard models for formulating geometric al-
gorithms are the real random access machine (real
RAM) and the decision tree ([13]). It is well known
that serious difficulties may occur when geometric al-
gorithms are implemented (see e.g. [8]). One reason
for this are degeneracies and the fact that infinite
precision arithmetic is not available on real world
computers. A degenerate configuration z € IR™ can
be informally decribed as a point where arbitrari-
ly small movements of £ may result in desastrous
movements of f(z). Mathematically this means dis-
continuity, therefore we formulate:
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Thesis 1 A configuration z € RM of a geometric
problem f :C RM — IRN is degenerate, iff f is
discontinuous in z.

In this contribution we introduce as a simple but
presumably new concept the level of discontinuity
for measuring the complicatedness of a degeneracy.
The main goal of this paper is to study the relati-
on between the level of discontinuity and the real
RAM computational complexity. In the last section
we discuss implementation problems.

As a computation model we introduce continuous
computation trees (CCT’s), which generalize the
loop—free real RAM’s. For a function f we define
the level of discontinuity of f at z € dom(f) and the
level of f by analytic properties. For a CCT T we
define the size of T at an input = and the size of T,
which is the number of leaves of T'. The size of T at z
and the size of T can be interpreted as complexities.
Yap ([21]) distinguishes between problem-dependent
and algorithm-dependent degeneracies. In our con-
text the level corresponds to problem-dependent de-
generacies and the size corresponds to algorithm-—
dependent degeneracies.

Our first result states that for any CCT T and
input z the size of T at z is at least as great as the
level of fr (the function computed by T') at z. This
means that the level of f at z is a lower bound for
the complexity at z for every CCT T computing f.

Our second result states that any function- f of fi-
nite level n can be computed by a CCT T of optimal
size, i.e. of size n. If range(f) is discrete, then the-
re is even a locally optimal CCT. Thus, the level of
f is an exact lower complexity bound for the CCT’s
computing f. In fact, in many applications the lower
bound can be achieved even with finite computati-
on trees which contain only polynomial or rational
functions.

We illustrate the results by various sorting pro-
blems and the line segment intersection problem
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from computational geometry ([14]) in Section 4. We
prove that the level of a function f :C RM — RN
with analytic domains of continuity is bounded by
M + 1. This applies to most of the geometric pro-
blems.

In the last section we discuss the computational
problems caused by degeneracies.

2 Levels of degeneracy and si-
ze of CCT’s

In this section we introduce the basic definitions and
formulate the main theorems. In the following by
f € X — Y we denote a partial function f with
dom(f) C X and range(f) CY.

Definition 2.1 Consider f :C RM — RN . Defi-
ne sets A (n € IN) inductively by A} := dom(f),
A,{_H = {z € A}, | fl 47 is discontinuous at z} for all
n >0 Forze IRM define the level (of discontinu-
ity) of f at z by lev(f,z) := min{n|z ¢ AL} and
define the level (of discontinuity) of f by Lev(f) :=
min{n | A/ = 0}.

(Set min(@) := oo.) Obviously Lev(f) =
max{lev(f,z)|z € RM}. If dom(f) # 0 and f is
continuous then Lev(f) = 1. If f is continuous in z
then lev(f,z) = 1. For example the simple test

fitR—{0,1}, fi(z) :={ ° z;g

has level 2 ( A} = R, A* = {0}, Al = 0). If
lev(f,z) < lev(f,z') then intuitively f is more dis-
continuous in z’ than in z. Thus the level indeed
measures the discontinuity of f. Finer hierarchies of
discontinuous functions are studied in [7].

In computational geometry algorithms are formu-
lated in the real random access machine (real RAM)
model ([13], [3]). Most of the problems from algo-
rithmic geometry can be implemented by loop—free
real RAM’s. We generalize the loop—free real RAM’s
by admitting assignments = := f(y) with arbitrary
continuous functions f :C R™ — IR". We define a
normal form of such programs.

Definition 2.2 A CCT (continuous computation
tree) T is a loop—free flowchart, where each internal
node ! is a binary branching with a test fi(z) < 0
(fi : RM — IR continuous) and each leaf [ contains
an assignment of the form y := gi(z) (¢ :C RY —

RN continuous), where z is the input and y is the
result of the computation. By fr :C RM — RN
we denote the function computed by T

Every loop—free real RAM with n branchings can
be transformed into an equivalent CCT with at most
n branchings. We define the size of T" at input z and
the size of T

Definition 2.3 A test g(z) < 0 is called critical in
a point z iff ¢ € U \ U where U := {z|g(z) < 0}.
Let T be CCT and z € dom(fr).

(1) Define size(T, z) inductively by:
size(T,z) := 1 if T has no branchings.
T =(if g(x) < 0then T} else T3), then

size(Ty, z) + size(Ty, z)
if the test g(z) < 0

size(T,z) = is critical in
size(Ty,z) if g(z) <0
size(Ty,z) else.
(2) Define

Size(T) := 1 + number of branchings in T (=
number of leaves in T').

Informally, size(T, z) is the number of leaves in T’
which can be reached on input z, if in each step of
the computation z may be disturbed independently.
The size function, therefore, formalizes the idea of
“level of degeneracy” of an algorithm. Obviously the
total number of test labels in T" which are critical in
z is an upper bound for size(T, z) — 1.

Now, we formulate our main results.

Theorem 1 Let T be a CCT and let z € dom(fr).
Then lev(fr,z) < size(T,z) and Lev(fr) <
Size(T).

Thus, lev(f,z) — 1 is an absolute lower bound for
the number of tests in any CCT T which computes f
in a neighbourhood of z. This holds especially for the
loop—free real RAM’s. By the following remarkable
theorem the lower bounds from Theorem 1 are exact
(in the case lev(f, z) if range(f) is discrete). -

Theorem 2 Let f be a function of finite level > 1.

a) There is a CCT T with f = fr and Lev(f) =
Size(T).

b) If range(f) is discrete, then there is a CCT T
with f = fr and (Vz € dom(f)) lev(f,z) =
size(T, z).



The theorem also guarantees the existence of an
optimal CCT T for any discontinuous function of
finite level. If range(f) is discrete, then there is even
a locally optimal CCT. Very often there is already
a loop-free real RAM with the minimal number of
branchings (see the examples in Section 4).

3 Proof of Theorems 1 and 2

The following lemma contains some simple facts
about the functions lev and size. The proof is left
to the reader.

Lemma 3.1 a) Iftwo functions f and g coincide in
a neighbourhood of a point z, then lev(f,z) =

lev(yg, z).

b) If a function f is a restriction of a function g,
te. f = g|x for some set X, then lev(f,z) <
lev(g, z) for all points z.

c) Ifz € AL, then lev(f,z) =n+ lev(f]A{.,J:).

d) For any CCT T the function size(T,.) is upper
semicontinuous, i.e. for any point r there is
a neighbourhood U of x such that size(T,y) <
size(T,z) forally € U.

Proof of Theorem 1
Let T be a CCT. The second inequality is an im-
mediate consequence of the first because Lev(fr) =
max{lev(fr,z)|z € dom(fr)} and (Vz € dom(fr))
size(T,z) < Size(T).

We prove the first inequality. If T does not contain
a branching node, then fr is a continuous function
and we have for all z € dom(fr):

lev(fr,z) =1 = size(T, z).

Else T has the foorm T = (if g(z) < 0
then T} else T3) where g is a continuous function
and T; and T, are CCT’s. Set o := {z|g(z) < 0}.
The proof is done by induction.

If z € o, then

lev(fr,z) =lev(fr,,z)  (by Lemma 3.1 a))
< size(Ty, z) (by induction)
< size(T, z).

The assertion follows in the same way if z is in the
interior of the complement of o.
Now fix an £ € 5\ 0. Then

size(T, z) = size(T1, z) + size(Tz,z). (1)
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By Lemma 3.1 d) there is an open neighbourhood U
of z such that we have size(T1,y) < size(Ti,z) for
ally € U. For all y € U No we obtain

lev(fr,y) = lev(fr,,y) < size(T1,y) < size(Ty, z)

as above by Lemma 3.1 a) and inductive hypothesis.
With k := size(T;, z) we conclude

AT NU Cot. (2)
Ifz ¢ A{T, then lev(fr,z) < k = size(Ty,z) <
size(T, z) finishes the proof. If z € A{", then by
Lemma 3.1 ¢) and a)

lev(fr,z) =k + Iev(fﬂAiTnU, z).
The relation (2) and fr|oc = fr,|oc imply
lev(fTr :l:) =k+ Iev(sz IA{"'nU’ x) .

By Lemma 3.1 b) and the inductive hypothesis we
obtain
lev(fr,z) < k + size(Ts, z) .

Finally Equation (1) gives the assertion lev(fr,z) <
size(T, z). a

In the rest of this section we always write A, in-
stead of Af. For the proof of Theorem 2 we need a
lemma, which we state without proof.

Lemma 3.2 Let f :C R™ — RY be a function
and n be an integer. Fiz a point zo € A,. Then
ﬂﬂ 15 discontinuous in o iff £g € Anyy.

Proof of Theorem 2

a) If the function f is continuous, then one can ob-
viously compute f by a CCT without any branching.
Now let f be a function with Lev(f) = n + 1
(n > 1). By Lemma 3.2 the function flAu\A—l is
continuous. Furthermore the function f|;— has le-
vel n by Lemma 3.1 ¢) and by Lemma 3.2. Let by
inductive assumption T;, be a CCT which computes
flz7 using n — 1 tests. We define the continuous
function g; by gi1(z) := —distance(z,A;). Then
01(z) <0 < z €A, . The following CCT Ty, 41
computes f using n tests, thus Size(Tp41) =n + 1:

Tosr 1= (if 91(2) <0 then (y:= fl, \7(2))
else T,)

b) If range(f) is discrete, then A;N Ay = 4; N Ao for
all ¢ > 1. The CCT of part a) proves the assertion.
a
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4 Examples

In the following we determine and estimate the le-
vels of discontinuity of several simple functions and
problems arising in computational geometry.

1) Define f, : IR? — {0,1,2} by

0 ifz<0
fo(z,y):={ 1 ifz>0andy<0

2 ifz>0andy>0.

Then Ao = R?, A = {(z,y) € R*|z=0orz >0
and y = 0}, A2 = {(0,0)}, A3 = 0. Thus Lev(f;) =
3.

2) Number of points: The function
fg") R —{1,...,n},

fé")(f) :=card{zy,...,Zn}
has level n. One easily checks that A, =
{Z|card{z;,...,zn} <n—m}for 0 <m<n-1
We obtain Lev(fé")) =n.

3) Sorting problems: Let S, be the set of all per-
mutations of {1,...,n} and M, := {Z € C"|i #
J=>z#zj}. Forz=z4+i-y,2=2+1-§€ M, we
define 2 < 2 : <= z<Zorz==Zandy <y We
assume M, C IR?*". Furthermore for a set F of func-
tions we set minLev(F) := min{Lev(f)|f € F}.
Two of the following sorting problems are not given
by a single function but by a set of functions.

Sort real vectors: ’

£V R — R,
(VZ € R") £\™(Z) is a permutation of T
and f{V@n < ... < £V (@
Give a sorting permutation for real vectors:
Fs(n) ={ f:IR" — S, |
(VZ € R") 24z)1) < -+ S 2@ }-
Sort complez vectors lexicographically:
") . M, — M,,
(Vz e M) fé")(f) is a permutation of Z
and (@)1 < ... < fM (@)
Put complez vectors into welldefined order:

Fr(n) ={f: M, — My | (¥(21,...,20) € My)
f(z1,-..,2n) is a permutation of
(z1,...y2n) and (VY7 € Sy,)
f(zly ey zn) = f(zﬂ‘(l)y .. 'rz‘lr(n))}-

Theorem 3 Foralln>1

Lev(fi")) =1, ie fg") is continuous,
minLev(Fs(n)) = n,

Lev(f{™) =,

n > minLev(Fz(n)) > n+1—min{D,(n)|p prime},
where Dp(n) is the sum of the digits in the ezpansion
of n in base p.

The first three statements of the theorem can be
proved by geometric considerations. The last one is
a consequence of a theorem by Vassiliev ([18]). Na-
mely, one can prove that minLev(F7(n)) is equal
to the Schwarz genus ([18]) of the covering map
h, : My, — M, /S,. The number minLev(F7(n))
is essentially the topological complexity in the sense
of Smale of the problem how to determine the zeros
of a complex polynomial ([15]). It is an open pro-
blem whether the estimates for minLev(F~(n)) can
be improved.

4) Number of segment intersections ([14]): Let us
denote a segment in the plane by a vector s € R*
giving the coordinates of the endpoints. The set
X = {(z1, 91,22, ¥2) € R*|(z1,31) # (z2,2)} con-
sists of the proper line segments. For j € {8,9} we
define

f}n) .C R*" — {0,...,9-;(7;—_2} by

f}")(sl, ..., 8n) := number of unordered
intersecting pairs {sg, s;} with k # 1

where

dom( fé")) := { § € X™ | at most two segments
si, 5; intersect in any point},
dom(fé")) := { §€ X" | no two segments
si, s; contain a common
proper line segment}.

Theorem 4 Lev(fé")) =2n-2 forn > 2,
n +1 > Lev(fé")) > 4n - 10 for n > 5 and
Lev(fé")) =1+ % for1<n<4.

The theorem illustrates that it is important to
know whether one can exclude certain types of de-
generacy or not.

It is clear that a degeneracy can occur only when
an endpoint of a segment lies on another segment.
Figure 4.1 shows how to obtain configurations 5 with
lev(fé")j) > 4n — 10 for n > 5. The other estimate

4n+ 12> Ley( fé")) is a consequence of the fact that



fg") has analytic domains of continuity, see below.

Figure 4.1

5) Functions with analytic domains of continuity:
Usually a problem in computational geometry can
be formalized by a partial function f :C RM —
IRN . In most of the cases this function is constant or
at least continuous on semialgebraic or semianalytic
sets. Thus, it has analytic domains of continuity
according to the following definition.

Definition 4.1 Fix a topological space T. A functi-
onf:CCM — T (or f:C RM — T) has analytic
domains of continuity iff for any point z € dom(f)
there is a neighbourhood U of z and there are fini-
tely many (real-)analytic functions fi,..., fi with
dom(f;) = U such that f is continuous on the 2¥
sets ﬂ;’:l N; where N; € {{z € U|fi(z) = 0},{z €
Ul fi(z) #0}}.

One easily checks that e.g. the function fé") has
analytic domains of continuity. We can prove that
the level of functions as in Definition 4.1 is bounded
by M + 1.

Theorem 5 Let T be a topological space and let
f:CCM™ — T (or f :C RM — T) be a partial
function with analytic domains of continuity. Then
Lev(f) < M +1.

Usually in geometric problems M is a multiple of
the size n of the problem.
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5 Discussion of the computa-

tional problems caused by
degeneracies

Usually algorithms for computational geometry pro-
blems are formulated in the real RAM model ([13]).
In that model they are mathematically correct. But
it seems to be very difficult to implement real RAM
algorithms on physical computers (see e.g. [8]). This
is an urgent problem as there are many real world
applications which require fast and reliable geome-
tric algorithms.

There are many heuristic approaches to solve the
problem. For example one can try to discretize the
problem and to work on a grid (see e.g. [5]). This
makes it possible to use exact integer or rational
arithmetic (see e.g. [16]). Another approach is to use
symbolic data in addition to numeric data (see e.g.
[9]). One might also change the input data slight-
ly in order to obtain more stable configurations (see
e.g. [11]). Or one could use varying error bounds
(see e.g. [6]) or some other method. Some of the ap-
proaches are very promising. Nevertheless until now
there is no mathematically precise realization of real
RAM algorithms by physical computers. The main
problem seem to be the tests z < 0, g(z) = 0 (g some
computed function), etc., which lead to degenerate
configurations.

Is there a theoretical reason why this problem is so
difficult? In classical recursion theory Church’s com-
monly accepted Thesis gives a mathematically preci-
se notion of computable integer functions. A similar
thesis for computable real functions has not yet been
established in theoretical computer science. But the-
re is a fundamental idea common to most of the theo-
retical approaches for defining “effectivity” in Analy-
sis (see e.g. Bishop/Bridges [2], Troelstra/van Dalen
[17], Grzegorezyk [4], Aberth [1], Weihrauch/Kreitz
[20] or [19], Pour-El/Richards [12], Ko [10]) which
we formulate here as a thesis.

Thesis 2 Every intuitively or physically computable
real function is continuous.

The thesis, of course, requires some detailed dis-
cussion and justification. It has a very disillusioning
consequence: It is impossible to compute disconti-
nuous functions f :C RM — RV, especially al-
most all geometric problems, (correctly) on physical
devices. This is in accordance with the experience
that it appears to be so difficult to implement geo-
metric algorithms (correctly) on computers.
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For a real RAM or CCT T the branchings are the
only source of discontinuity of the computed function
f. On the other hand by our results every function
f:C RM — IRV of finite level can be computed
by a CCT T such that the level of discontinuity is
1+ the number of branchings of T', and no CCT with
less branchings computes f.

Since programs for geometric algorithms are nee-
ded in practice and since by Thesis 2 correct pro-
grams cannot exist in general, one can only try to
find approximate implementations. Therefore ma-
thematical definitions for “approximate” applyable
to discontinuous functions and to implementations of
real RAM’s are needed and the possibility of imple-
menting good approximations with low complexity
has to be investigated. We believe that our concepts
of level of discontinuity and size of a CCT can be
useful for this purpose.
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