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Abstract

A convex polygon that is nearly-similar
to a model polygon P has sides parallel and in
the same order to the corresponding sides of
P. The lengths of the sides are unrestricted
and may be zero.

Given a set of target convex polygons in
the plane with a total of n vertices, and a
fixed model convex stabbing polygon P, the
minimum-perimeter polygon nearly-similar
to P that stabs the targets can be found in
time O(n) (but time exponential in the num-
ber of sides in the stabbing polygon).

If P is an isothetic rectangle, then the
minimum-area polygon stabbing the targets
can be found in O(n log n) time.

1 Introduction

The problem of intersecting a finite collection of
closed subsets of the plane with a common line is the
subject of many results in discrete and computational
geometry. Such a line is known as a line transversal,
or stabbing line. A good account of combinatorial
aspects of the problem is found in [11]. Algorithms
for computing line stabbers include [13] for comput-
ing a line stabber for a set of parallel lines, and [9]
for computing a line stabber of a set of arbitrarily
oriented line segments. In [1, 7, 10] algorithms are
given for stabbing collections of simple objects with
a line. Algorithms for stabbing lines, line segments
and polyhedra with a line in three dimensions are
given in [3]. In [2], a general approach based on lin-
ear programming is given for stabbing d-dimensional

polyhedra with a d — 1 hyperplane.

In this paper we examine optimization probleins
as a generalization of stabbing line problems. That
1s, given a class of stabbers, find one which is optimal
under some measure.

In [4] an O(n logn) algorithm is presented to de-
termine a shortest line segment that stabs a set of
n convex polygons. When using a two dimensional
object for stabbing one can choose to optimize either
area or perimeter. In the first case [5] presents an
O(nlogn) algorithm to determine a miniimum area
convex polygon that stabs a set of n parallel line seg-
ments. Optimizing the perimeter of a convex polygon
stabber is discussed in [12, 14] where O(n logn) algo-
rithms are given to determine a minimum perimeter
convex polygon stabber of line segments restricted to
lie in one or k fixed directions respectively. Stabbing
line segments with a smallest convex polygon, opti-
mizing either area or perimeter, is not known to be
polynomial nor is it known to be NP-complete.

In this paper we are primarily concerned with
smallest convex polygonal stabbers. We admit an in-
put set, T', of closed convex polygonal subsets of the
plane. In section 3 we give a linear time algorithm to
determine a smallest perimeter nearly-similar stabber
of T', by formulating the problem as a linear program.
In section 4 we use a divide and conquer approach to
determine a smallest area isothetic rectangle stabber
of S in O(nlogn) time. We have omitted some of the
proofs in this extended abstract. We refer the reader
to [6] for the full version of this paper.
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2 Preliminaries

A polygon P consists of a set of n points in the plane
P1,P2, .. .Pn With (p;, pi+1) joined by a line segment
(an edge of the polygon) for all i (subscript arithmetic
modulo n) such that the edges form a simple closed
curve in the plane. The plane minus those edges is
divided into two regions, a bounded region (the in-
terior of the polygon) and the unbounded ezterior
of the polygon. We conventionally use “polygon” to
refer to the boundary and interior of the polygon to-
gether.

We define a convez polygon as the intersection of
half-planes.

The direction vector along an edge e from vertex
pi to its next neighbour p;4+1 is denoted ¢ or p;. We
denote the normal to & directed towards the interior
of the polygon as n,. The inside of e is the n}, side of
an infinite line through e.

We denote the z and y coordinates of a point p;
as pi(x) and p;(y) respectively. The distance between
two points p and ¢ is denoted d(p, ¢).

Alternatively, a polygon can be described by the
location of the first vertex and specifying a counter-
clockwise walk around the polygon by giving the tu-
ple (direction vector, distance) for each side. Thus
P above can be represented by its first vertex p; and
each side i by the tuple (p;, d(pi, pi+1))-

An isothetic rectangle is a rectangle whose sides
are parallel to the z and y axes.

We will normally assume any region X of the
plane to include its boundary; when we need to dis-
tinguish the interior of X from its boundary we will
denote the strict interior of X as X°.

We say that a stabbing polygon P stabs a tar-
get polygon S if PN S # 0. The polygon P stabs a
collection of targets if P stabs each individual target.

3 Minimum-perimeter stab-
bing with a nearly-similar
convex polygon

Let @ be a fixed convex polygon. Let P =
P1,D2,-.-Pk be a k-sided convex polygon nearly-
similar to Q. If we describe P in (direction, distance)
format, we have the position of the starting vertex
p1, a set of direction vectors pi, pa,...pk and corre-
sponding distances {y,l,...lg.

We will develop neccessary and sufficient condi-
tions for P to stab a single conves polygon. These
conditions will be in the form of linear inequalities,

which we will later use in a linear program for find-
ing the minimum perimeter stabber which stabs all
of the polygons.

Lemma 1 If two convez polygons A and B with pos-
ttive area do not intersect, then there 1s an edge of A
or B whose supporting line separates A and B.

Lemma 2 Two conver polygons A and I3 intersect
if and only if for every cdge e of A therc is a point of
B on the inside of e and for each edge e of B there
1s a point of A on the inside of .

Lemma 2 just says that there must be some point
on the inside of each edge e, but in fact, we can iden-
tify a particular point that must be on the inside of
e. If e is an edge of A, let p be the vertex of B that is
most extreme in the direction n,. Clearly, p is inside
¢ if any point of B is.

Let S = 51, 54,...5, be an n-sided convex poly-
gon. For each edge i of the stabbing polygon P we
have the condition

(s —pi)-np, >0, (1)

where s Is the vertex of S that is most extreme in
direction nj,.
Similarly, we have for each edge ¢ of the target S,

(p—si)-n;, >0, (2)

where p is the most extreme vertex of P in direction

n;,. Note that the choice of p is not affected by the
lengths ;.

Theorem 1 If S is fized in the plane and P is rep-
resented as the location of the vertex py and a set of
(direction vector, distance) tuples (p;,l;), then cach
constraint from (1) and (2) is a linear inequality.

Theorem 2 A minimum-perimeter polygon, nearly
similar lo a fized convex polygon, that stabs a collec-
tion of convex polygons S1,Ss,...Sym having a total
of n vertices can be found in O(n) time.

Proof: For each S;, create the constraints as out-
lined above. If S; has n; vertices, this gives k + n;
constraints for S;, for a total of km + n inequali-
ties. However, each constraint from (1) need not be
included for each target polygon; only the most ex-
treme vertex of the entire set of target polygons needs
to be used. So we have a total of k + n inequalities.
The perimeter of P is given by

k
> b
i=1

(3)



Each side 7 of P must have non-negative length,
giving another k constraints,
li 20, (4)

and finally two constraints to force P to be a polygon,
i.e., that the sides form a closed loop:

Do Lp) =0

i=1

(5)

(this gives two equations when put in component
form).

The result is a k + l-variable linear program with
2k+n+2 inequalities, which can be solved in time lin-
ear in the number of inequalites for fixed k. However,
the time required grows exponentially with & [8].

Constructing the constraints takes time O(kn)
(linear for bounded k).

The constraints have all been shown to be neces-
sary and together sufficient, and the objective func-
tion is the perimeter of the polygon, so the solution
is a minimum-perimeter polygon with the given ori-
entations.

4 Stabbing with a minimum-
area isothetic rectangle

We show how stabbing a set of convex polygons can
be reduced to a problem of stabbing a single centre
rectangle CR and a set of four monotone chains in
the corner regions around CR.

In this section, all rectangles are assumed to be
isothetic and include their interior. We construct an
algorithm to determine a smallest area rectangle stab-
ber P that stabs a set of m convex polygons. The
algorithm will run in O(nlogn) time, where n is the
total number of vertices in the target collection.

Given a set S of convex polygons, define T, B, L
and R as follows:

B = 1

( max y )
3€ z,y)€s

T = max ( min )
€S \(z,y)€s

( max x)
T,y)€s

max| min z

s€ES ((:c,y)es )

1t is clear that if B > T or L > R, then there is
a rectangle of zero area that stabs S, so without loss
of generality we assume that B < T and L < R.

R =
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Let C'R denote the centre rectangle defined by the
four lines y = B,y =T,r = L and x = R. From the
definitions of B, T, L and R it follows that any stab-
bing rectangle has to contain CR. These four lines
divide the plane into nine regions. We will denote the
four corners by 1,2, 3 and 4 and the corner regions by
Q1, @2, Qs and Q4, as shown in the following figure.

| |
Q4 | Qs

i
1
|
)
1
|

7o !

L R
We can now prove the following lemma:

Lemma 3 Lets € S. IfsN CR =0 then there is a
unique corner region () such that

e sNQ°#£0
o s ntersects both sides of QQ

The corner region uniquely associated with s will
be denoted by Q.

Define a new set S’ of line segments from S as fol-
lows: Polygon s contains two monotone chains con-
necting the two boundaries of Q;. Ignore the chain
whose edges contain CR in their interior. For each
edge in the other chain, add the line segment formed

" by intersecting the infinite line through the edge with

Qs to 5.
The stabbing problem for S is essentially the same
as for 9:

Lemma 4 An isothetic rectangle stabs S if and only
if it contains CR and stabs S'.

In the remainder of this paper we will continue
with the problem of stabbing CR and 5’.

An infinite line through each s € S’ divides the
plane into two halfplanes. The halfplane containing
CR will be called the outside of s, the halfplane not
containing CR is the inside of s. This is consistent
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with the use of “interior” for edges of 5" derived from
convex polygons.

As was shown in the above lemma, each corner
region () has to contain one of the corners of a stab-
bing rectangle and this corner has to be inside or on
each s in Q). Therefore corner ¢ of a stabbing rectan-
gle is in the intersection of ); and the inside closed
halfplanes of all s in @);. This area is convex and is
bounded by a polygonal chain. We denote the chain
in corner region @; by C;.

The chains can be computed in O(nlogn) time.
For example, in corner region (J,, the intersection
points of s € S’ and the line y = B can be sorted on
their x-coordinates. This order determines the order
in which the line segments appear in the chain C}.
The line segments in }; that do not lie on C; can
now be found by a left-to-right scanning algorithm.

If a corner of a stabbing rectangle lies on a chain
C; we will call it a bouncing corner; otherwise, it is
called a stabbing corner. The following lemma shows
that a smallest stabbing rectangle cannot have too
many stabbing corners:

Lemma 5 A smallest stabbing rectangle cannot have
two adjacent stabbing corners

Lemma 6 If a smallest stabbing rectangle has two
stabbing corners and two bouncing corners, then the
bouncing corners are vertices of their respective polyg-
onal chains C;.

Corollary 3 A smallest stabbing rectangle has two
opposite bouncing corners on vertices of two chains
C; or has at least 3 bouncing corners.

A smallest stabbing rectangle can now be found
as follows: find a smallest stabbing rectangle with
opposite corners on two chains, and find the smallest
stabbing rectangle with three bouncing corners. As
will be shown, both can be found in O(nlogn) time.

Below is an algorithm to find a smallest stabbing
rectangle with corners on vertices of C'; and Cj.

Input:  Four monotone chains of vertices,
C1,C2,Cs and Cy, with C) and Cs lying strictly be-
low C3 and C4 and with- Cy and C4 lying strictly to
the left of Cy and Cj.

initialization: (Done only once for all vertices)

For each vertex of a € Cy, extend a line verti-
cally up until it intersects C4, and store this in-
tersection point with a. Then extend a line hor-
izontally from this intersection point through
Cs. Let X(a) be the subset of (3 vertices that
lie on or above this horizontal line. Since (5 is
monotone, this is a contiguous subset of Cs.

Similarly, extend a line horizontally fromr a to
(4, recording the intersection point, then up
through ('3, and let Y (a) be the contiguous sub-
set of ('3 that lies on or to the right of this line.

For each vertex a we have stored the intersec-
tion points on Cy and Cjy, as well as X(a) and
Y (a). Since the subsets are contiguous it suf-
fices to store two indices.

The symmetrical information is calculated and
stored for each vertex b € (5.

The two chains (' and (/4 are not used again.

SmallestRectangle(A, B): This recursive proce-
dure takes two contiguous subchains of (', and
(3 as input, which we denote A and B respec-
tively. It will return a smallest-area rectangle
with bouncing corners on vertices of A and B,
or nil if no such rectangle exists.

step 1: If |A] > |B]:

Let @ € A be the vertex that most nearly di-
vides A into two equal pieces. Let A; be the
subset of A to the left of « and A4, be the sub-
set of A to the right of a.

If X(a)NY(a)=0, then

e r; = SmallestRectangle( A, Y (a))
e ro = SmallestRectangle( A,, X(a))

o Return the smaller of r| and rq, if any.

e Find a smallest stabbing rectangle with
corner a and a corner b € B, subject to the
constraint that the rectangle intersects (',
and C,;. By definition of X(a) and Y(a),
we know that such a b must exist and that
b € X(a)NY(a). Call this rectangle ro.

e Let B; be the subset of B to the left of b
and let B, be the subset of B to the right
of b.

e r; = SmallestRectangle(A;, {b} U B,)

e ry = SmallestRectangle(A,, B U {b})

e Return the smallest of rg, r; and rs.
step 2: Otherwise, we have |B| > |A|. This is han-

dled symmetrically to step 1, splitting on the
middle element of B instead of A.

The correctness of the algorithm follows from the
following lemma:



Lemma 7 Consider some points (a,b) and (¢, d) and
\’ = {(;El, !/1)» (1?3, yg), } lUfth

r;>a>c, foralli
y; > d > b, for all i,

and a monotone chain lying above (¢, d), and a mono-
tone chain lying ot the right of (a,b).

Let P be a smallest stabbing rectangle with cor-
ner (a,b) and a corner in X. Let the corner in X be
(zp,yp). Let Q be a smallest stabbing rectangle with
corner (c,d) and a corner in X. Lel the corner in X
be (zq,yq). Then x, < x4 and y, > y,.

Theorem 4 The algorithm finds a smallest rectangle
with bouncing corners on vertices of C'; and C'.

The algorithm does not consider all possible pairs
of corners. The pairs it eliminates from considera-
tion in an invocation arise from two possible events,
depending on whether X(a) N Y (a) = 0.

First, if X(a) NY(a) # ¥, then the vertices elimi-
nated in both recursive calls are precisely those that
lemma 7 shows cannot be smaller than the rectangle
formed by a and b.

In the second case, X(a) N Y(a) = @, suppose
without loss of generality that |A|] > |B|. For a
vertex a’ € A;, we have Y(a’) C Y(a), and the
call to SmallestRectangle(A;, Y(a)) has not elimi-
nated any potentially valid rectangles that use a’.
Similarly for a’ € A, we have X(a’) C X(a) and
SmallestRectangle( A, X(a)) has not ignored any po-
tential rectangles.

Since we never eliminate a smallest rectangle from
consideration, it will be eventually found if it exists. g

The input to the algorithm is n points, split into
four sets, Cy,Cq,C5 and C3. The sets are monotone
and ordered. The initialization step can be done in
O(n) time by walking along the four chains in order.

Let T'(t) be the running time of the recursive al-
gorithm on ¢ vertices.

The recurrence is T(¢) = T(ky) + T(ka2) + cat
for some ¢; > 0, where t/4 < ki, ks < 3t/4
and ky + k2 < t. It can be shown by induc-
tion that for ¢t > 2, T(t) < catlogt, where ¢3 =
max(maxo<i<a T'(2), c2/ log(4/3)).

A smallest stabbing rectangle with two bouncing
and two stabbing corners can be found by applying
this algorithm also to chains Cy and Cj.

A smallest stabbing rectangle with three bounc-
ing corners can be found as follows. We first find a
smallest rectangle with bouncing corners on chains
Cy and C3 (and also on either C3 or Cy4 or both). We
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then apply the same algorithm with chains ('3 and
C’y. One of these has to be the smallest rectangle
with three bouncing corners.

Below is an algorithm to find a smallest stabbing
rectangle with corners on C'; and ('s:

1. For all vertices on (4, draw vertical lines down-
ward, until they hit (';; from these intersection
points, draw horizontal lines to C'; from these
intersection points, draw vertical lines to C's.
Draw similar lines from C3 via Cs and (' to
(4. Also draw lines from the vertices of ('} to
'y and from the vertices of (/; via (5 to (5.
Similarly for C as shown in the next figure.

The problem is now divided into a set of prob-
lems as in the following figure. Each of these
simple problems has exactly one line segment
in cach of the four arcas @, ..., Q4.

2. Find a smallest stabbing rectangle that bounces
on (' and 'y for each subproblem.

Since the number of vertices on the chains is
less than n, the number of subproblems is O(n).
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Since each subproblem can be solved in con-
stant time, this algorithm runs in O(n) time.
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