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Orthogonal Drawings

with the Minimum Number of Bends *
(Extended Abstract)

Giuseppe Liottal

Abstract

We deal with the classical problem of constructing an or-
thogonal drawing of a 4-planar graph with the minimum
number of bends along the edges. Recently, Garg and
Tamassia proved the NP-completeness of the problem.
The main result of the present paper is an algorithm that
solves the problem for a biconnected 4-planar graph with
n vertices in O(n* - p(n)) time, where k is the number of
vertices of degree 4 and p(n) is a polynomial.

1 Introduction and Overview

An orthogonal drawing of a graph is a planar draw-
ing such that all the edges are polygonal chains of
horizontal and vertical segments.

We deal with the classical problem of constructing
orthogonal drawings with the minimum number of
bends along the edges [12]. Tamassia [8] proposed an
elegant algorithm that solves the problem in polyno-
mial time for graphs with a fixed planar embedding.
The algorithm is based on a combinatorial characteri-
zation that allows to map the problem into a min-cost
flow one. Linear time heuristics have been proposed
by Tamassia and Tollis in [9]. Such heuristics guar-
antee at most 2n + 4 bends for a biconnected graph
with n vertices. Recently, Kant [6] has proposed ef-
ficient heuristics with better bounds for triconnected
4-planar graphs and general 3-planar graphs (a graph
is k-planar if it is planar and each vertex has de-
gree at most k). Observe that orthogonal drawings
make sense only for 4-planar graphs. Tamassia, Tollis
and Vitter {10, 11] have given lower bounds and the
first parallel algorithm. An annotated bibliography
on graph drawing can be found in (3].

However, all the above papers work within a fixed
planar embedding and the solutions obtained within
a fixed embedding can be far from the optimum [2].
Hence, recently the variable-embedding version of the
problem has been intensively investigated. The prob-
lem of finding the planar embedding that leads to
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the orthogonal drawing with the minimum number
of bends has been shown to be NP-complete by Garg
and Tamassia [5]. In the same paper it is shown that
it is NP-hard to approximate the minimum number
of bends in an orthogonal drawing of an n-vertex
planar graph with an O(n!~¢) error for any positive
€. In [2] a polynomial time algorithm for non-fixed
embedding 4-planar series-parallel graphs and bicon-
nected 3-planar graphs is presented.

The contributions of the present paper are the fol-
lowing:

o We present an algorithm that receives as input
an n-vertex biconnected 4-planar graph with &
vertices of degree 4 and constructs an orthogo-
nal representation of the input graph with the
minimum number of bends in O(n* - p(n)) time,
where p(n) is a polynomial.

e We improve the time complexity of the algorithm
presented in [2] for the special case that the input
graph is a 3-planar series-parallel graph.

e We investigate the variation of the number of
bends of an orthogonal drawing when it is “rolled
up”.

The paper is organized as follows. Preliminaries
are in Section 2. The variation of the number of bends
of an orthogonal drawing obtained when “rolling-up”
an orthogonal drawing is studied in Section 3. The
algorithms are given in Section 4. Omitted proofs
can be found in the forthcoming full paper.

2 Preliminaries

We assume familiarity with connectivity and pla-
narity [4]. An embedded graph is a planar graph with
a given embedding, i.e. an ordering for the edges in-
cident on the vertices such that there exists a planar
drawing of the graph that respects the ordering. A
k-planar graph is a planar graph whose vertices have
degree at most k.

An acyclic digraph G with exactly one source s,
exactly one sink ¢t and with the edge (s,t) is an st-
digraph. A split pair of G is either a separation pair
of G or a pair of adjacent vertices. A split component
of a split pair {u,w} is either an edge (u,w) or a
maximal subgraph G,,, of G such that {u,w} is not
a split pair of Guw; v and w are the poles of the
split component. An st-orientation of a graph G is
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an orientation of the edges of G into an st-digraph

(each biconnected graph can be oriented into an st-
digraph [4]).

A SPQ*R tree [1] T of G is a rooted ordered tree
describing a recursive decomposition of G with re-
spect to its split pairs, and it will be used to represent
all the embeddings of G with s and ¢ on the exter-
nal face. Nodes of T are of 4 types: S, P,Q* and R.
Each node p has an associated acyclic digraph called
skeleton of 1 denoted by skeleton(u). Non-root nodes
of T are called internal nodes. Tree T is recursively
defined as follows:

Chain case: If G consists of a simple path from s to
t then T is a single @*-node u whose skeleton is G
itself. '

Series case: If G is 1-connected, let ¢y,..., ck—1 (kK >
2) be the cutvertices of G such that no cutvertex has
degree less than three; c,..., cx—1 partition G into
its blocks Gi,..., Gk in this order from s to t. The
root of T is an S-node u. Graph skeleton(u) is the
chain ey, ..., e, where edge e; goes from ¢;—; to ¢;,
co =s and ¢ = t.

Parallel case: If s and t are a split pair for G with split
components G,..., Gy (k > 2), encountered in this
order when going around s in clockwise order, the
root of T is a P-node u. Graph skeleton(u) consists
of k parallel edges from s to ¢, denoted ey, ..., ek.

Rigid case: If none of the above cases applies, let
{s1,t1} ,-.,{Sk,tk} be the maximal split pairs of G
(k > 1), and for i = 1..k, let G; be the union of all
the split components of {s;,¢;}. The root of T is an
R-node u. Graph skeleton(u) is obtained from G by
replacing each subgraph G; with edge e; from s; to
t;.

We call pertinent graph of p the graph whose de-
composition tree is the subtree rooted at u. Observe
that the skeleton of an R-node has only two possible
embeddings with the poles on the external face, cor-
responding to the two possible flippings of the com-
ponent around the poles. We refer to such possible
embeddings as embedding A and embedding B.

Property 1 Let T be the SPQ*R tree of a 4-planar
graph and let u be a node of T with poles u and w.
All vertices of skeleton(u), except eventually u and
w, have degree at least 3.

Let G be an st-digraph, it is always possible to
define an SPQ*R tree T of G such that: (1) The root
of T is a P-node with two children; one of them is
a @*-node representing edge (s,t); (2) Each internal
P-node has children R, S, or Q*-nodes; (3) Each S-
node has two children; (4) Each Q*-node has children
edges of G. Such a tree is called decomposition tree
of G.

Let G be an st-digraph and Gy, C G be a split
component of G. The edges of G that are incident
on a pole v (v = u,w) of Gy, and that belong (do
not belong) to Gy, are called internal edges (exter-

nal edges) of v with respect to G,,; the number of
such edges is called internal degree (external degree)
of v with respect to Gyy. An orthogonal st-digraph
is a digraph whose edges are chains of horizontal and
vertical segments. Observe that an orthogonal st-
digraph is a 4-planar graph. An optimal orthogo-
nal representation of an st-digraph G is an orthog-
onal st-digraph H that is isomorphic to G and has
the minimum number of bends along the edges; H is
called optimal orthogonal st-digraph. In the following
we consider only orthogonal st-digraphs and orthogo-
nal representations of st-digraphs such that the edge
(s,t) is on the external face.

Let H be an orthogonal st-digraph and H,,, C H
be a split component of H. A pole v (v = u,w) of of
H,,, is called bridge pole when its internal degree with
respect to Hy,, is one; v is called nonbridge pole when
its internal degree with respect to H,,, is greater than
one. The alias vertez of a pole v (v = u,w) of Hyy
is a dummy vertex v’ placed on an external edge of
v with respect to of Hy, and such that the dummy
edge (v,v’) has no bends. A pole admits one or two
alias vertices depending on its external degree. Let
u’ (w’) be an alias vertex of u (w). Let P,,, be any
undirected simple path in H,,, from u to w. A spine
Sy of Hyy, is the simple path obtained by concate-
nating edge (u’, u), path P, and edge (w,w’). In [2]
it is shown that the number n(.S, 4 )of right turns mi-
nus the number of left turns encountered along Sy
when going from u’ to w’ does not depend on the
choice of path P,,,.

The spirality oy, of Hy, is defined as follows;
three cases are possible, depending on the number of
alias vertices of u and w. (1) Both u and w have
just one alias vertex, say u’ and w’, respectively. Let
Suw be a spine of Hyy; 0H,, = n(Syw). (2) Pole
u has just one alias vertex, say u’; w has two alias
vertices, say w’ and w”. Let Sy and Sy be two
spines of Hyy; oH,, = (M(Suw) + n(Suw))/2. (3)
Pole u has two alias vertices, say u’ and u”; w has
two alias vertices, say w’ and w”. Suppose u’ and w’
are on the same face of H. Let Sy, and Sy~ be
two spines of Hyy; 0H,, = (n(Suww) +n(Syrwr))/2.
Property 2 [2] If the poles of Hy,, satisfy condition
of Case 2 of the above definition, then 20, is an
odd integer number; else (the poles of H,, satisfy
either condition of Case 1 or condition of Case 3 of
the above definition), then o, is an integer number.

The component H,,, is optimal within the spirality
o, if it doesn’t exist any Hy,, such that oy, =
oy, and such that H,, has more bends than Hy),,.
Theorem 1 [2] Let H be an optimal orthogonal st-
digraph with n vertices and let Hy,, be a split compo-
nent of H. Then (i) Hyy is optimal within its spi-
rality; (i) |lon,,| < 3n—2.

The following lemma descends from [2].

Lemma 1 Let p be a node of T and let Hy,, be its
pertinent graph. If u is an S-node, the spirality of
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Figure 1: An example of non monotonic cost func-
tion.

Hy,, is the sum of the spiralities of the pertinent
graphs of the children of u. If u is a P-node, let
H),, be any of the pertinent graphs of the children

of i lon,., —omr, | <2.

3 Spirality and Cost Functions

The cost function of a split component associates to
each value o of spirality the cost of an orthogonal rep-
resentation of the component optimal within spirality
o. In this section we study the interplay between spi-
rality and cost.

The following property can be trivially proved.

Property 3 The cost function of a split cbmponent
1s piecewise linear and it is symmetric with respect to
the cost azis.

Intuitivelly, one would expect that the number of
bends of a split component monotonically increases
when the spirality of such component is augmented.
In (2] the following result is proved.

Lemma 2 [2] The cost function of a split compo-
nent of a 3-planar graph is nondecreasing, piecewise
linear, and convez.

Surprisingly, a similar lemma does not hold for gen-
eral 4-planar graphs. To give an example, in Fig. 1
we show the cost function of a parallel component
that has a minimum for ¢ = 1. The following lemma
shows that the behavior of a cost function can be even
worse.

Lemma 3 There exists a series-parallel split compo-
nent of a 4-planar graph whose cost function is nei-
ther conver nor monotonic.

Sketch of proof: Consider the split component
of Fig. 2 |

However, the cost function of the split component
of Fig. 2 has only one non-convexity. Now we show
an infinite family of series-parallel split components
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Figure 2: An example of non-convex cost function.

Figure 3: The series composition G,,.

whose cost functions ripple a linear number of times.
Let G,, be the split component recursively defined as
follows: G is the split-component of Lemma 3; G,
(n > 1) is the series composition of Gy, one edge, and
Gn-1 (see Fig. 3). Observe that G,, has 14n vertices.

Lemma 4 The cost function of G, has value zero
for o = £2i (i = 0,...,n) and has value different
from zero for all the remaining values of o.

Sketch of proof: For the symmetry of the cost
functions (see Property 3) we can restrict our atten-
tion to nonnegative values of spirality. The proof is
by induction on n. We prove first that the cost func-
tion of G, has value 0 only for spirality 0 and 2.

Let Gy be the split-component of Fig. 1. The split
component G is the series composition of two copies
of Gg separated by one edge 9. The cost function of
eo is a linear function with slope 1. The cost fuction
of Gy has value 0 only for spirality 1. Namely, for ev-
ery value of spirality less than 4, the cost fuction has
the behavior depicted if Fig. 1. Since any orthog-
onal representation of Go has a spine S with three
vertices, for values of spirality greater or equal to 4,
such orthogonal representation has at least one bend
on S. From Lemma 1, the spirality of an orthogonal
representation of G is the sum of the spiralities of its
components. It follows that an orthogonal represen-
tation of G; has at least one bend except when the
spirality of e is 0 and the spiralities of the orthogo-
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nal representations of Gy are either 1 or —1. Thus,

the cost function of G, has value 0 only for spirality
0 and 2. ~

Suppose now the lemma holds for G,,_,. We prove
the lemma for G,,. G, is the series of G,_1, one
edge e and G;. Again, from Lemma 1, the spirality
of an orthogonal representation of G, is the sum of
the spiralities of its components. It follows that an
orthogonal representation of G,, has at least one bend
except when the spirality of e is 0 and the spiralities
of the orthogonal representations of G,_; and G; are
such that the corresponding cost functions have value
0. Thus the cost function of G,, has value 0 only for
c=2(1=0,...,n). a

The following theorem summarizes the results of
this section.

Theorem 2 There exists an infinite family of 4-
planar split components whose cost functions are nei-
ther convexr nor monotonic.

4 Optimal Orthogonal Drawings of 4-
planar Biconnected Graphs

Aim of this section is to describe a drawing algorithm
that receives as input a biconnected 4-planar graph
(called simply graph in the rest) G and produces as
output an optimal orthogonal representation of G.

4.1 High-Level Description of the Al-
gorithm

The basic idea of the algorithm is to incrementally
construct an optimal orthogonal representation of G
by composing orthogonal representations of its split
components, that are optimal within given values of
spirality. To do that we orient the edges of G into
an st-digraph and compute a decomposition tree T'
of G. Also, the nodes of T are equipped with a data
structure, called optimal set, devised to describe op-
timal orthogonal representations of the split compo-
nents of G. Let u be a node of T and let G, be
the pertinent graph of u. The optimal set of u is a
set of distinct orthogonal representations of G, each
one optimal within a distinct value of spirality. Since
we are interested in considering only the orthogonal
representations of G, that may appear in an optimal
orthogonal representation of G, the cardinality of the
optimal set of u, according to Theorem 1, does not
exceed 6n — 3.
A high-level description of the algorithm follows.

Algorithxh Optimal Orthogonal Drawing
input: graph G.
output: optimal orthogonal representation of G.
Stepl: For each edge (u,v) of G:
Compute an st-orientation G’ of G such
that u is the source, v is the sink.
Compute a decomposition tree T of G’.

Compute the optimal sets of the nodes of
T.

Define an optimal orthogonal representa-
tion of G’ by composing the orthogonal rep-
resentations contained in the optimal sets.

Step 2: Choose the orthogonal representation
that, among the computed ones, has the mini-
mum number of bends.

end Algorithm.

The computation of the optimal sets of @*-, S- and
P-nodes can be performed in polynomial time ex-
ploiting Lemma 1. Furthermore, in [2] it is described
how to compute in polynomial time the optimal set
of an R-node whose pertinent graph has vertices with
degree at most three. In this paper the problem of
computing the optimal set of an R-node whose per-
tinent graph G, has vertices of degree 4 is mapped
to a min-cost flow problem on a network where the
cost functions for the arcs of the network are the cost
functions of the split components of G,,.

The flow network is described in Subsection 4.2.
Clearly, if all the cost functions of the arcs in the
network were convex, the min-cost flow could be com-
puted in polynomial time [7]. In Subsection 4.3 we
show that the min-cost flow problem on the network
associated to G, can be solved in O(n* - p(n)), where
k is the number of vertices of degree 4 and p(n) is a
polynomial of the number n of vertices of G. In the
same section we discuss the overall time complexity
of the algorithm.

4.2 The flow network model

Let T be a decomposition tree of an st-digraph, let
u be an R-node of T with pertinent graph G, and
poles u,w and let embedding A and embedding B
for skeleton(u) be given.

Let skeleton(u) (skeletong(u)) be the embed-
ded graph obtained by adding (u,w) to skeleton(u)
with embedding A (embedding B) and such that: (1)
(u,w) is on the external face, and (2) when going
along (u,w) from u to w, the external face is left to
the right.

We associate to i, embedding A, and a given value
of spirality o a network N,(o, A) defined as follows
(the definition of a network N, (o, B) associated to p,
o and embedding B is analogous).

e Nodes: there is a node (verter-node) for each
vertex of skeletons(u); there is a node (face-
node) for each face of skeleton4(u); and there
are two extra nodes: a source node s and a sink
node t.

e Arcs:

— There are two arcs (f’,f”) and (f”,f')
for each pair of faces sharing an edge e.
The arcs have capacity, lower bound, and
cost assigned with the following rule. Arcs



(f',f") and (f”,f’) have infinite capac-
ity, lower bound zero, and cost defined by
the cost function of the corresponding split
component of G, with poles the endpoints
of e.

— There is one arc (v, f) where v is a vertex
that belongs to face f. Arc (v, f) has in-
finite capacity and zero lower bound and
cost.

— There is one arc (s, f) for each internal face
f composed by less than 4 edges. Arc (s, f)
has capacity 4 minus the number of edges
belonging to the face and zero lower bound
and cost.

— There is one arc (s, v) for each vertex v. Arc
(s,v) has capacity equal to 4 — deg(v) and
zero lower bound and cost.

— There is one arc (f,t) for each internal face
f composed by more than 4 edges. Arc
(f,t) has capacity equal to the number of
edges belonging to the face minus 4 and zero
lower bound and cost.

— There is one arc (fe,t) for the external face
fe- Arc (fe,t) has capacity equal to 4 plus
the number of edges belonging to the face
and zero lower bound and cost.

The flow value z in N, (0o, A) is constrained equal to
the sum of the capacities of the arcs outgoing node s.

The intuitive interpretation of network N, (o, A) is
the following. Each unit of flow in the network repre-
sents an angle of 7 /2, or, from another point of view,
one unit of spirality. For each pair (f’, f"), (f”, f")
linking two face-nodes, their difference of flow rep-
resents the spirality of the split components whose
virtual edge separates f’ and f” in skeleton 4(u); the
cost of the flow represents the number of bends of the
orthogonal representation of G,.

Observe that all the components whose vertices
have degree at most 3 have integer spirality. So, in
this case, the problem of computing the optimal or-
thogonal representation for a given value of spirality
o can be solved as an integer min-cost flow problem
by adding constraints that force the component to
have spirality 0. To do that, let f’ and f” be the
faces sharing (u,w) and let f” be the external face of
skeleton 4(u). We give zero cost both to (f, f”) and
to (f”, f'); if ¢ < 4 then we give lower bound and ca-
pacity 4 — o to (f', f) and zero capacity to (f”, f');
if o > 4 then we give lower bound and capacity o — 4
to (f”, f') and zero capacity to (f’, f").

When solving the problem for components that
contain vertices of degree 4 we have several additional
problems:

1. Some virtual edges of skeletons(u) might rep-
resent components whose spirality is not an
integer. Furthermore, the component G, it-
self might have noninteger spiralities (see Prop-
erty 2). Since the cost functions of such compo-
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nents have meaningful values only for noninteger
values of spirality and since the flow has integer
values, the network problem is not sound in this
case.

2. It might exist a degree-4 vertex v of G, corre-
sponding to a degree-3 vertex in skeletona(p).
This causes an ambiguity in the correspondence
between the values of the angles between pairs of
virtual edges incident on v in skeleton4(u) and
the values of the angles between pairs of edges
incident on v in the orthogonal representation
of G.

To solve the above problems we add several con-
straints to the flow network as follows. Suppose
e = (v/,w’) is a virtual edge (shared by faces f’ and
") of skeleton 4(u), corresponding to the pertinent
graph G, of a node v of T. We distinguish two cases.

e Both u’ and w’ have internal degree 2 in G,.
Observe that ' and w’ have degree 4 in G (oth-
erwise they would have degree 2 in skeleton 4 (1),
which is impossible for Property 1) and have de-
gree 3 in skeleton4(u). In this case the spirality
of G, has integer values, but Problem 2 occurs.
To solve it we constrain both the angle at v’ on
face f’ and the angle at w’ on face f” to be flat.
To do that capacity and lower bound of both arcs
(v, f') and (w’, f") are set to one.

e Exactly one pole, say u’ of G, has internal degree
2. In this case both Problems 1 and 2 occur: the
spirality of G, is not integer since w’ is a bridge-
pole while u’ is a nonbridge pole with external
degree 2; and there is ambiguity for the angles
around u'. Suppose f’ (f”) is to the left (right)
of e. We constrain the angle at u’ on face f’
to be flat by setting to one capacity and lower
bound of arc (v, f’). Also, the cost functions of
arcs (f/, f") and (f”, f') are shifted of 0.5 to the
left to give appropriate costs to integer values of
flow.

Theorem 3 Let T be a decomposition tree of an st-
digraph and let u be an R-node of T, whose perti-
nent graph is G,. Let H, be an orthogonal repre-
sentation of G, such that (1)H, is optimal within
spirality o, and (2)skeleton(u) has embedding A
(embedding B). Then it corresponds to H, a mini-
mum cost integer flow in N,(o,A) (N (o, B)). Fur-
thermore, an orthogonal representation H, of G,
such that (1)H, is optimal within spirality o, and
(2)skeleton(p) has embedding A (embedding B) can
be computed from the minimum cost integer flow in
N,(o,A) (N,(o,B)).

4.3 Computational Complexity of the
Algorithm
Let T be a decomposition tree of an n-vertex st-

digraph with k vertices of degree 4; let u be an R-
node of T' whose pertinent graph is G,,. In order to
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compute the optimal set. of y, for each value o of spi-
rality in the optimal set, we solve the min-cost flow
problem on both network N, (o, A) and N,(c, B) and
we choose the cheapest solution; such solution, ac-
cording to Theorem 3, corresponds to an orthogonal
representation of G, optimal within spirality o.

Lemma 5 The optimal set of u can be computed in
O(n* - (n®logn)).

Sketch of proof: Suppose first all the cost func-
tions of the components of G, are convex. This im-
plies that for any given o, the cost functions of the
arcs of both N, (o, A) and N, (o, B) are convex. Thus,
for each value o of spirality in the optimal set of x, the
min-cost flow problem is solvable in O(n? logn) time
(observe that the number of vertices in the network is
O(n)). Since the cardinality of the optimal set of y is
O(n) (see Theorem 1) the overall time complexity is
O(n®logn). Suppose now G, has h components with
non-convex cost functions; for Theorem 1, each cost
function is defined on at most 3n — 6 different values
of spirality . The corresponding networks N, (o, A)
and N,(o, B) have 2 h arcs whose cost functions are
non-convex. On each of the two networks, a flow of
minimum cost can be computed in O(n" - (n®logn))
time by considering all the combinations for the pos-
sible values of the flows in the arcs; the number of
such combinations is O(n"), because there are O(n)
possible values for the flow on each arc and for each
pair (f', f"),(f"”, f') the optimality of the solution
implies one of the two arcs with zero flow. The proof
is completed by observing that h = O(k), because
only the components of G,, containing vertices of de-
gree 4 can have non convex cost functions (see also
Lemma 2. O

We are now ready to discuss the time complexity
of Algorithm Optimal Orthogonal Drawing.

Theorem 4 Algorithm Optimal Orthogonal Draw-
ing computes an optimal orthogonal representation
of an n-vertex graph with k vertices of degree 4 in
O(n*-p(n)) where p(n) is a polynomial. Purthermore,
it computes an optimal orthogonal representation of a
3-planar series-parallel graph with n vertices in O(n®)
time.

Sketch of proof: The computation of an st-
orientation of G, the construction of the decompo-
sition tree and the definition of an optimal orthogo-
nal drawing [2] can be performed in O(n) time ( [4],
(1], [2]). The computation of the optimal sets re-
quires polynomial time for the P-, S-, and Q*-nodes
and O(n* - (n3logn)) time for the R-nodes. Thus,
O(n* - p(n)) is the time required to compute the op-
timal orthogonal representation of a 4-planar graph.
Suppose now the input graph ia a 3-planar series-
parallel graph; this means that the nodes of the de-
composition tree of T are only of the P, S and Q*
type and that no vertex of the input graph has de-
gree 4. In this case the optimal sets of the nodes of
T can be computed by visiting T from the leaves to

the root as follows. We compute first the optimal
sets of the @*-nodes, which requires O(n) time. The
optimal set of an P-node u with children p; and po
can be easily constructed in O(n) time by exploiting
Lemma 1 and using ordered structures for the opti-
mal sets of u; and ug. The optimal set of an S-node
i with children u, and ps is constructed by consider-
ing, for each possible value o of spirality, the optimal
sets of u; and of uo and finding two representations
such that the sum of their spiralities equals o (see
Lemma 1) and the sum of their costs is minimum.
Such task can be performed in O(n) time by using
ordered structures for the optimal sets of u; and ps
and exploiting the convexity of the cost functions of
the pertinet graphs of u, p; and po. O
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