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Graph-Theoretical Conditions for Inscribability and Delaunay Realizability

Michael B. Dillencourt*

ABSTRACT

We present new graph-theoretical conditions for inscribable
polyhedra and Delaunay triangulations. We establish sev-
eral sufficient conditions of the following general form: if a
polyhedron has a sufficiently rich collection of Hamiltonian
subgraphs, then it is inscribable. These results have several
consequences:

e All 4-connected polyhedra are inscribable.

o All triangulations without chords or nonfacial triangles
are realizable as (combinatorially equivalent) Delaunay
triangulations.

o All simplicial polyhedra in which all vertex degrees are
between 4 and 6, inclusive, are inscribable.

o All simplicial polyhedra in which all vertex degrees are
between 5 and 6, inclusive, are circumscribable.

We also prove stronger results than were previously known
concerning matchings in inscribable polyhedra. Specifi-
cally, any nonbipartite inscribable polyhedron has a perfect
matching containing any specified edge, and any bipartite
inscribable polyhedron has a perfect matching containing
any two specified disjoint edges. These results are best
possible.

1 Introduction

One of the central themes of computational geometry is
the study and application of proximity graphs, graphs de-
fined by connecting points that are “close together” in
some suitable sense. In the past few years, there has
been significant interest in studying the graph-theoretical
properties of these objects. For example, Patterson and
Yao [28], and Eppstein [17], have studied the diameter of
nearest-neighbor graphs. Monma and Suri have character-
ized the graphs that can be realized as planar minimum
spanning trees [26]. Cimikowski has derived necessary con-
ditions for graphs to have realizations as Relative Neigh-
borhood Graphs (RNG’s) and Gabriel Graphs [7]. Lubiw
and Sleumer have given a sufficient condition for a planar
graph to have a realization as a RNG [25]. Bose et al. have
characterized the trees that can be realized as proximity
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graphs for several different definitions of proximity graphs
3]

Delaunay triangulations are a particularly useful class
of proximity graphs. Closely related to Delaunay triangu-
lations is the class of inscribable graphs. (An exact for-
mulation of the relation is given in Lemma 2.2, below.)
The problem of providing a graph-theoretical characteri-
zation of inscribable graphs is a long-standing open prob-
lem, dating back to René Descartes [19] and formally posed
by Jakob Steiner [35]. There has been considerable recent
progress on the problem. Jucovi¢ and Sevec have estab-
lished necessary and sufficient conditions for inscribabil-
ity in the special case of quadrangular polyhedra satisfying
certain constraints on their edge types [24]. Dillencourt
has shown that all Delaunay triangulations are 1-tough and
have perfect matchings [12], and that any outerplanar tri-
angulation is realizable as a Delaunay triangulation [11].
Rivin has provided a numerical characterization of inscrib-
able polyhedra as those polyhedra that admit a certain type
of weighting (Characterization 2.1, below). Dillencourt and
Smith have provided a graph-theoretical characterization of
trivalent inscribable polyhedra, and a linear-time algorithm
for recognizing them [14]. Nevertheless, a general graph-
theoretical characterization has remained elusive. Exam-
ples given in [14] illustrate some of the subtleties involved.

In the present paper, we establish graph-theoretical con-
ditions for inscribability and Delaunay realizability that
considerably narrow the gap between the most general suffi-
cient conditions and the strongest necessary conditions. In
Section 3 of this paper, we establish several sufficient con-
ditions. In particular, we show that any 4-connected planar
graph is inscribable (Theorem 3.3), that any 4-connected
planar graph can be realized as a combinatorially equiv-
alent Delaunay tessellation (Theorem 3.5), and that any
triangulation without chords or nonfacial triangles can be
realized as a combinatorially equivalent Delaunay triangu-
lation (Theorem 3.6). Theorem 3.6 provides a partial con-
verse to the results of [12], which imply that a Delaunay
triangulation cannot have too many chords or nonfacial tri-
angles. Theorems 3.3 and 3.6 are consequences of a more
general result, Theorem 3.1 which says, roughly, that if a
planar graph has a sufficiently rich collection of Hamilto-
nian subgraphs, then it is inscribable. We also establish
sufficient conditions for inscribability and circumscribabil-
ity based solely on vertex degrees (Theorems 3.9 and 3.10).
These results, in turn, imply a sufficient condition for De-
launay realizability formulated in terms of vertex degrees
and the valence of the outer face (Theorem 3.11).
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In Section 4, we present several necessary conditions for
inscribability. In particular, we show that a nonbipartite
inscribable polyhedron has a perfect matching containing
any given edge, and a bipartite inscribable polyhedron has
a perfect matching containing any two given disjoint edges.

2 Preliminaries

Except as noted, we use the graph-theoretical notation and
definitions of [2]. V(G) and E(G) denote the set of vertices
and edges of a graph G, respectively. If S € V(G), I(S)
denotes the set of edges incident on some vertex in S, and
N(S) denotes the set of all vertices adjacent to some vertex
in S. If v € V(G), I(v) and N(v) are shorthand for I({v})
and N({v}), respectively. |S| denotes the cardinality of a
set S, and deg(v) = |N(v)| denotes the degree of a vertex
v. A graph G is I-tough [6] if for all nonempty S C V(G),
¢(G-S) < |S|. (Here ¢(-) denotes the number of connected
components.) G is I-supertough if, for all S C V(G) with
S| >2,¢(G-9)<]|S|

A Hamiltonian cycle in a graph is a spanning cycle. A
graph is Hamiltonian if it has such a cycle. A graph is
said to be k-Hamailtonian if removing any k vertices from
it yields a Hamiltonian graph. A k-Hamiltonian graph is
(k — 2)-connected. A famous theorem of Tutte [38, 39]
asserts that any 4-connected planar graph is Hamiltonian,
and that there is a Hamiltonian cycle passing through any
two given edges incident on a common face. A refinement
due to Nelson (see [37]) says that any 4-connected planar
graph is 1-Hamiltonian.

A triangulation is a 2-connected plane graph in which all
faces except possibly the outer face are bounded by trian-
gles. The Delaunay tessellation, DT(S), of a planar set of
points S is the unique graph with V(G) = S such that the
outer face is bounded by the convex hull of S, all vertices
on the boundary of a common interior face are cocircular,
the vertices of an interior face are exactly the points of S
lying on the circumcircle of the face, and no points of S lie
in the interior of a circumcircle of any interior face. DT(S)
is said to be nondegenerate if it is a triangulation and all
convex hull vertices of S are extreme points of S, degen-
erate otherwise. If DT(S) is nondegenerate, it is called
the Delaunay triangulation. Elementary properties of the
Delaunay tessellation/triangulation, and the more conven-
tional definition as the dual of the Voronoi diagram, are
developed in [1, 16, 29]. We call a triangulation Delaunay
realizable if it is combinatorially equivalent to a Delaunay
triangulation.

A graph G is polyhedral if it can be realized as the edges
and vertices of the convex hull of a noncoplanar set of points
in 3-space (a polyhedron). A famous theorem of Steinitz
(see [20]) asserts that a graph is polyhedral if and only if
it is 3-connected and planar. A polyhedron is trivalent if
all its vertices have degree 3, simplicial if all its faces are
triangles. A polyhedron is trivalent if and only if its dual is

simplicial. A polyhedron is inscribable if it has a (combina-
torially equivalent) realization as the edges and vertices of
the convex hull of a noncoplanar set of points on the surface
of a sphere in 3-space. A polyhedron is circumscribable if
it has a (combinatorially equivalent) realization as a poly-
hedron each of whose faces is tangent to a common sphere.
Both inscribability and circumscribability are properties of
combinatorial types of polyhedra (i.e., their graphs), so it
is reasonable to talk about inscribable and circumscribable
graphs. It is shown in [20] that a polyhedron is circum-
scribable if and only if its dual is inscribable. A cutset in a
graph is a minimal set of edges whose removal increases the
number of components. A cutset is noncoterminous if its
edges do not all have a common endpoint. The following
result is due to Rivin [30] (also see [22, 23, 32, 34]).

Characterization 2.1 A graph is inscribable if and only
if it is polyhedral and weights w can be assigned to its edges
such that:

(W1) For each edge e, 0 < w(e) < 1/2.

(W2) For each vertez v, the tolal weight of all edges inci-
dent on v is equal to 1.

(W3) For each noncoterminous cutset C C E(G), the to-
tal weight of all edges in C is strictly greater than 1.

The following lemma describes the connection between
Delaunay tessellations and inscribable graphs, using a dif-
ferent formulation from that in [4]. The proof is an im-
mediate consequence of basic properties of stereographic
projection [8]. The operation of stellating a face f in a
plane graph G consists of adding a vertex inside the face f
and then connecting all vertices incident on f to the new
vertex.

Lemma 2.2 A plane graph G is realizable as DT(S) for
some set S, with f as the unbounded face, if and only if the
graph G’ obtained from G by stellating f is inscribable.

The following lemma, which is proved in [15], character-
izes the circumstances in which adding edges to inscribable
graphs preserves inscribability. Here and throughout the
paper, we assume that all bipartite graphs are 2-colored
red and blue.

Lemma 2.3 ([15]) Let G be an inscribable graph. Sup-
pose that H is obtained from G by performing any of the
following transformations in such a way that H remains
planar.

(T1) If G is nonbipartite, adding an edge to G.
(T2) IfG is bipartite, adding a red-blue edge to G.

. (T3) If G is bipartite, adding a red-red edge and a blue-

blue edge to G.

Then H is inscribable, and can be realized through an arbi-
trarily small perturbation of the vertices of G.



3 Sufficient Conditions

Theorem 3.1 Any I-Hamiltonian, planar graph is in-
scribable.

Proof Let G be 1-Hamiltonian and planar. Since G is
3-connected, it is polyhedral. Let v1,..., v, be the vertices
of G. Fori € {1,...,n}, let Z; be a Hamiltonian cycle
through G — {v;}. For each e € E(G), let zi(e) = 1 if Z;
passes through e, 0 otherwise, and let

- Z?:l :c,'(e)
v = Sa-n
Let H be the subgraph of G consisting of those edges e
for which w(e) > 0. By construction, H is 1-Hamiltonian,
hence polyhedral. We claim that the function w, when re-
stricted to E(H), satisfies conditions (W1)-(W3) of Char-
acterization 2.1. Indeed, since each edge e is on at least one
and at most n —2 of the Z;, 0 < w(e) < (n—2)/(2(n—1)),
so (W1) is satisfied. Since each vertex of H is on exactly
n — 1 cycles, (W2) holds. Finally, every Z; crosses each
noncoterminous cutset at least twice, so the total weight
across each cutset is at least n/(n — 1) > 1. Hence H is
inscribable, by Characterization 2.1.
Since H is 1-Hamiltonian, it cannot be bipartite, so
adding the edges of G — H to H preserves inscribability
by Lemma 2.3. Hence G is inscribable. |

Corollary 3.2 Ifk > 0, any k-Hamiltonian planar graph
is inscribable. .

Proof For k > 0, any (k + 1)-Hamiltonian planar graph
is necessarily k-Hamiltonian. Indeed, if G is (k + 1)-
Hamiltonian and planar, then G is (k + 3)-connected, so
removing k — 1 vertices from G leaves a 4-connected graph.
Since any 4-connected planar graph is 1-Hamiltonian, it
follows that G is k-Hamiltonian. By induction, G is 1-
Hamiltonian, hence inscribable by Theorem 3.1. |

Notice that the only feasible values of k¥ in Lemma 3.2
are 1, 2 and 3, since no planar graph can be 6-connected.
Lemma 3.2 is false for k¥ = 0, as there exist Hamiltonian,
noninscribable polyhedra, such as the stellated tetrahedron
shown in Figure 1(a).! Thomassen has shown that there
exist 1-Hamiltonian, planar graphs that are not Hamilto-
nian [36].2

Theorem 3.3 Any 4-co7mected planar graph is inscrib-
able.

!The noninscribability of the stellated tetrahedron follows imme-
diately from Theorem 4.1, below.

2Thomassen’s example and Theorem 3.1 jointly provide the fol-
lowing historical footnote. At the 1986 SCG conference in Yorktown
Heights, the question was raised whether all inscribable polyhedra are
Hamiltonian [27]. The question was answered in the negative in [10]:
there is a 25-point counterexample. It follows from Theorem 3.1 that
Thomassen’s 105-point example of [36], which had been discovered 10
years before the conference, was also a counterexample.
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(a) (b)

Figure 1: (a) The stellated tetrahedron is Hamiltonian, but
noninscribable. (b) This graph is 1-Hamiltonian and has a
Hamiltonian cycle passing through every edge, but it is not
Delaunay realizable.

Proof This follows immediately from Theorem 3.1 and
Nelson’s theorem. ]

We note that a 4-connected graph need not be circum-
scribable. Examples are given on [14, page 184].

Our next goal is to show that any triangulation without
chords or separating triangles is realizable as a Delaunay
triangulation (Theorem 3.6). (A chord is an edge connect-
ing two nonconsecutive vertices on the outer face, and a
separating triangle is a nonfacial triangle). We first estab-
lish a more general theorem (Theorem 3.4). Before stating
this theorem, we remark that it is best possible in the fol-
lowing sense: there exist graphs that are 1-Hamiltonian
and have a Hamiltonian cycle passing through every edge
but which are not realizable as Delaunay tessellations. One
such example is the graph of Figure 1(b), which is not re-
alizable as a Delaunay tessellation because the graph of
Figure 1(a) is not inscribable.

Theorem 3.4 If G is planar and 1-Hamiltonian, F is a
face of G, and there is a Hamillonian cycle of G passing
through any two consecutive edges on the boundary of F,
then G is realizable as a Delaunay tessellation (with outer

face F).

Proof Let G and F be as in the statement of the theorem.
Let v;, i =0,...,k—1, be the vertices of G on the boundary
of F, listed consecutively about the boundary of F. Let
G’ be the graph obtained by stellating face F', with v the
stellating vertex. By Lemma 2.2, it suffices to prove that
G’ is inscribable. We construct a weighting of G’ satisfying
Characterization 2.1 in three steps.

Step 1: Let w be a weighting for G, satisfying conditions
(W1)—(W3) of Characterization 2.1. Such a weighting ex-
ists by Theorem 3.1.

Step 2: For each i € {0,...,k—1}, let Z; be a Hamiltonian
cycle of G using the edges v;—1v; and v;v;y,, where the
subscripts are taken modulo k. For each i € {0,...,k — 1}
and each e € E(G), let yi(e) = 1/2 if Z; passes through
e, 0 otherwise. Each function y;(-) satisfies (W2), and it
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also satisfies (W1) and (W3) except that the inequalities
are not strict. Let

k=1 0
yle) = ol )+1k+2£2=0 i(e) (3.1)

Since y is a convex combination of w and the y;’s, y satisfies
conditions (W1)-(W3). Also each edge e incident on F
satisfies the inequality

y(e) > k/(k* +1) > 1/(2k). (32)
Step 3: Define a new weighting function z on E(G’) by:

y(e) if e € E(G) and e is not
part of the boundary of F

y(e) — 1/(2k) if e € E(G) and e is part
of the boundary of F

1/k if e = vv; for some i

:c(e) =

It is clear that z(-) satisfies (W1) and (W2). Let C be
any cutset in G'. If C does not contain any edges of G
incident on F, then ) .. z(e) = 3 . y(e). Otherwise,
C contains at least one edge incident on v for every pair of
edges on the boundary of F, so Y ..o z(e) > 3 .cc y(e)-
Hence z(-) satisfies (W3), and the proof is complete. W

Theorem 3.5 Any 4-connected planar graph is realizable
as a Delaunay tessellation, with an arbitrary face as its
outer face.

Proof This is immediate from Theorem 3.4, Nelson’s
Theorem, and Tutte’s theorem. |

Theorem 3.6 Any triangulation T' without chords or non-
facial triangles is realizable as a Delaunay triangulation,
with the nontriangular face as the outer face.

Proof If the outer face has valence 4 or more, then stel-
lating the outer face yields a 4-connected graph, so the
result follows from Corollary 3.3 and Lemma 2.2. If the
outer face is a triangle, then T is 4-connected, so the result
follows from Corollary 3.5. n

Since no bipartite graph can be 1-Hamiltonian, the pre-
ceding theorems do not apply in the bipartite case. Define
a bipartite graph to be red-blue- Hamiltonian if whenever
a red vertex and a blue vertex are removed, the graph is
Hamiltonian. Theorem 3.8, a bipartite analog of Theo-
rem 3.1, is an immediate consequence of the following more
general theorem.

Theorem 3.7 If a planar graph G has the property that
removing any pair of adjacent vertices yields a Hamiltonian
graph, then G is inscribable.

Proof Omitted; see the full paper. |

Theorem 3.8 If a planar bipartite graph is red-blue
Hamiltonian, then it is inscribable.

Figure 2: A “string of pearls” graph.

Proof Immediate from Theorem 3.7. ]

We conclude this section by showing that if a polyhedron
is “almost regular” in a certain sense, then it is inscribable.
This leads to a sufficient condition for Delaunay realizabil-
ity, phrased in terms of degree constraints.

Theorem 3.9 Every simplicial polyhedron in which every
vertez has degree 4§, 5, or 6 is 1-Hamiltonian and hence, by
Theorem 3.1, inscribable.

Proof [sketch] Let G be a simplicial polyhedron in
which every vertex has degree 4, 5, or 6. If G is 4-
connected, the result follows from Theorem 3.3. If G is
not 4-connected, it is shown in the full paper that G must
be a “string of pearls,” a nested sequence of triangles as
shown in Figure 2. Such a graph is easily seen to be 1-
Hamiltonian, and hence inscribable by Theorem 3.1. n

The “string-of-pearls” graphs just defined are not 4-
connected, but their duals are bipartite and trivalent. It
follows from (14, Theorem 3.1] that they are not circum-
scribable. So Theorem 3.9 is false if we replace “inscrib-
able” with “circumscribable.” However, we have:

Theorem 3.10 Every simplicial polyhedron in which ev-
ery vertex has degree 5 or 6 is both inscribable and circum-
scribable.

Proof Inscribability is a special case of Theorem 3.9. It
follows from the proof of Theorem 3.9 that if G is a sim-
plicial polyhedron in which every vertex has degree 5 or
6, then G is 4-connected. It is observed in [14] that any
trivalent polyhedron with a 4-connected dual is inscribable
(proof: assign each edge a weight of 1/3). This observation
implies that G has an inscribable dual, so G is circumscrib-
able. n



Theorem 3.11 Suppose a triangulation T satisfies the fol-
lowing degree conditions:
e Every interior vertex has degree 4, 5, or 6;

o Every boundary vertex has degree 3, 4, or 5; and
o The outer face has degree 4, 5, or 6.

Then T is Delaunay realizable.

Proof The conditions imply that stellating the outer
face would yield a graph in which all vertices have de-
gree between 4 and 6, inclusive, so the result follows from
Lemma 2.2 and Theorem 3.10. ]

4 Necessary conditions

The following theorem is proved in [14].

Theorem 4.1 Any nonbipartite inscribable graph is I-
supertough.

A perfect matching in an n-vertex graph is a set of
|n/2] disjoint edges, where |-| denotes the “floor” function.
The following two theorems assert the existence of perfect
matchings containing specified edges in inscribable polyhe-
dra. They strengthen the results of [12], which showed that
a perfect matching existed but allowed no additional con-
straints. Proofs, omitted here, are given in the full paper.

Theorem 4.2 Any nonbipartite inscribable graph has a
perfect matching containing any given edge.

Theorem 4.3 Any bipartite inscribable graph has a perfect
matching containing any two given disjoint edges.

Examples given in the full paper show that both of these
theorems are best possible, and that Theorem 4.2 becomes
false if we replace “nonbipartite matching” with “Delaunay
triangulation.” '

5 Remarks

Theorems 3.1 and 4.1 provide a pair of sufficient and neces-
sary conditions that bracket the class of inscribable graphs.
Specifically, Theorem 3.1 says that if G is planar and re-
moving any vertex from G yields a Hamiltonian graph, then
G is inscribable. Theorem 4.1 says that if G is inscribable,
removing any vertex from G yields a 1-tough graph. It
is well known that any Hamiltonian graph is 1-tough [6].
Lemma 2.2 suggests an alternative formulation of these two
theorems. Let G be any triangulation with n vertices, and
let G’ be the simplicial planar graph obtained by stellat-
ing the outer face of G. Consider the family F of n + 1
triangulations that can be obtained by deleting a vertex of
G. Theorem 3.1 says that if every one of the triangula-
tions in F is Hamiltonian, then G’ is inscribable and hence
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every triangulation in F (including G) is Delaunay realiz-
able. Theorem 4.1 says that if G is Delaunay realizable,
then every triangulation in F is 1-tough.

In view of the reformulation in the preceding paragraph,
it is tempting to conjecture that there is some property P,
between Hamiltonicity and 1-toughness, such that a nonbi-
partite polyhedral graph is inscribable if and only if remov-
ing any vertex produces a graph with property P. A proof of
some instantiation of this statement would provide a purely
graph-theoretical characterization of inscribable polyhedra
(at least in the nonbipartite case), and hence provide a
purely-graph theoretical characterization of Delaunay tri-
angulations. However, it is not clear what property P might
be.

The existence of a relationship between Hamiltonicity
and inscribability has been previously noted. Indeed, it was
observed in [9] that any Hamiltonian polyhedral graph is
inscribable in a certain highly degenerate sense: the graph
can be realized as a polyhedron, “flattened” to a disk, with
all the vertices lying on a common circle in an order de-
termined by the Hamiltonian cycle. The results of Sec-
tion 3 indicate that this relationship is rather strong. Nev-
ertheless, there are limits to the extent of the relationship.
In particular, it is an NP-complete problem to determine
whether an inscribable polyhedron (or a Delaunay triangu-
lation) is Hamiltonian [13].

We close with two open problems:

1. We conjecture that any simplicial polyhedron with de-
gree < 6, with the single exception of the stellated
tetrahedron, is 1-Hamiltonian and hence inscribable.
This result would strengthen Theorem 3.9 by remov-
ing the lower bound on the vertex degrees. We have
verified this conjecture for all simplicial polyhedra with
up to 15 vertices. Ewald has shown that any simplicial
polyhedron with maximum degree < 6 is Hamiltonian

[18].

2. The methods of Section 3 are, in principle, construc-
tive. In particular, a weighting of a 4-connected poly-
hedron satisfying conditions (W1)-(W3) can be found
in quadratic time by repeatedly using algorithms from
[5]. Once such a weighting is known, an inscription can
be found in polynomial time [31, 33]. Nevertheless, it
would be useful to have faster methods for directly
constructing inscriptions and Delaunay realizations of
these polyhedra.
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