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Cardinality Bounds
for Triangulations with Bounded Minimum Angle

Scott A.

Abstract

We consider bounding the cardinality of an arbitrary
triangulation with smallest angle . We show that
if the local feature size (i.e. distance between disjoint
vertices or edges) of the triangulation is within a con-
stant factor of the local feature size of the input, then
N < O(1/a)M, where N is the cardinality of the
triangulation and M is the cardinality of any other
triangulation with smallest angle at least a. Previ-
ous results [7, 8] had an O(1/a'/*) dependence. Our
O(1/a) dependence is tight for input with a large
length to height ratio, in which triangles may be ori-
ented along the long dimension.

1 Introduction

We consider a triangulation used as a mesh for a fi-
nite element method. The important properties of
such a triangulation are the shape and the number
of its elements: Shape affects the accuracy of the nu-
merical results, and the number of elements affects
the running time. We measure shape by the small-
est angle. Every triangulation must have an angle no
larger than the smallest input angle, and this is tight
up to small constant factors due to integrality [3, 8].

Typically many vertices are added to an input to
produce a triangulation. Proving a lower bound on
the number of vertices (cardinality) needed to achieve
a given smallest angle is the main topic of this pa-
per. By considering a long thin rectangle, it is ob-
vious that the number of triangles necessary to en-
sure that all angles are at least some fixed o depends
on the geometry of the input. Bern, Eppstein and
Gilbert {1] compared the cardinality of their triangu-
lation with the smallest angle in a Delaunay trian-
gulation of the input. In three dimensions, Mitchell
and Vavasis [7] were able to define the cardinality
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of their tetrahedralization in terms of a theoretical
lower bound for the given input: Their tetrahedral-
ization has cardinality N and smallest angle «, and
any tetrahedralization with cardinality m and small-
est angle at least « has M > Nec(a), where ¢(a) is a
function of (only) a. This bound depends upon the
notion of local feature size, distance to disjoint ver-
tices or edges. Ruppert [8] used the same technique
to bound triangulation cardinality in two dimensions,
and showed that local feature size could be extended
to a continuous function in the plane, related to the
second-order Voronoi diagram [2].

Up until this present work, this approach had a se-
rious flaw. The analysis of Ruppert [8] derives a ¢(«)
that is very large, about 1025, and reveals that the
analysis of Mitchell and Vavasis [7] has ¢ depending
doubly exponentially on 1/a.

In this paper we show that the relationship be-
tween local feature size and cardinality is quite tight.
In particular, we derive a ¢(a) depending linearly on
1/« which is tight up to (reasonable) constant fac-
tors. This improves the bounds on the algorithm of
Ruppert [8]. This is also in good agreement with the
intuition of practitioners: Advancing front algorithms
often use a notion of local feature size when deciding
the size of elements to introduce [4].

1.1 Overview

Local feature size at a point z, Ifs(z) roughly measures
the largest possible size of a triangle containing z in
a triangulation with all triangles nearly equilateral.
In Section 3 we show that if triangles with angle a
are allowed, then an edge of a triangle containing z in
a valid triangulation has length O(Ifs(z)2'/*). We re-
late this to the extent of a Voronoi cell, and show that
the integral of 1/Ifs? over points near a vertex of a
triangulation scales only linearly with 1/¢. For PSLG
and polygon with holes input, we prove a similar re-
sult for points near an edge of the triangulation. By
integrating over the entire input, we obtain a lower
bound on the cardinality of a (theoretically best) tri-
angulation. In Section 4 we show that an (algorithmi-
cally generated) triangulation has cardinality at most



a constant factor times its local feature size integral
(independent of «). Thus to prove that an algorithm
produces a triangulation with reasonable cardinality,
one need only show that the triangles produced are
large compared to the local feature size of the input.

2 Definitions

We consider several types of input; point sets, planar
straight-line graphs, and polygons with holes. Each
of these we denote by P.

Local feature size. We define local feature size in
P at a point z, or lfsp(z), as the radius of the smallest
circle centered at z that contains points of disjoint
faces of P. Most often we will be concerned with local
feature size defined by the faces of a triangulation,
Ifs7, which is necessarily smaller than lfsp. By faces
we mean vertices and edges for PSLG or polygon with
holes input, and just vertices for point set input. We
call the integral of 1/1fs? the local feature size integral.

Voronoi cell. We make use of the Voronoi di-
agram of the vertices of a triangulation [2]. The
Voronoi diagram partitions the input into a set of
convex cells. Each cell Vor(V') consists of the points
closer to the given vertex V' than any other vertex.

3 Lower bounds on cardinality

Here we show that any triangulation with minimum
angle bounded by o must have at least a certain num-
ber of vertices, depending on the local feature size of
the input and linearly on 1/a.

In a triangulation with bounded smallest angle, the
longest length of an edge at a vertex is bounded in
terms of k1/* and the shortest edge at the vertex,
where £ = 2cosa, 1 < k < 2. We extend this to
bound the maximum extent of a Voronoi cell in terms
of k/* and the minimum extent of the cell. Local fea-
ture size at a point in a Voronoi cell can be bounded
by the the point’s distance to the Voronoi cite, or by
the minimum extent of the cell. For PSLG or poly-
gon with holes input, we also consider zones for edges
akin to the Voronoi cells for vertices. We then show
that the local feature size integral over a cell or zone
is O(1/a). Integrating over all of the triangulation
shows that the cardinality of any triangulation times
O(1/c) is larger than the local feature size integral
over P.

We first bound the ratio of the length of an edge at
a vertex in terms of the length of the smallest edge
at that vertex; see Figure 1.
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Figure 1: We bound how quickly triangles and
Voronoi cells can grow.

Theorem 1 At any vertez V of a triangulation with
all angles at least o, we have

|E| _ Ler
rer— < k o s
|F| ~

where E and F are edges at V, and k = 2cosa. Note
1<k<2and LEF/a>1.

Proof. We use induction on the number of edges be-
tween E and F at V. The base case is if there are no
edges between E and F, that is if £ and F are in a
common triangle T. Let G be the third edge and e, f
and g the angles opposite £, F and G.

From the law of sines, |E|/|F| = sine/sin f. This
may be expressed as sin(g + f)/sinf = cosg +
singcos f/sin f. For any triangle angle § we have
T > 0 > «, which implies cos§ < cosa. Hence the
above is less than %(1 + %%)

If f > g, then this is less than k. Otherwise, the
worst case is when f = . If ¢ = o as well, then the
above equals k. Furthermore, since sin(g + a)/sina
is a more slowly growing function of g than is k9/¢,
we have that sin(g + a)/sina < k9/* for all g > .

For the induction step, let H be any edge between
E and F. By induction the theorem is true for the
number of edges between E and H and between H

and F. Thus {7 = |BHE < k4BHRLHF = LBF )

Note that this is a contrapositive version of the key
theorem of Mitchell [5, 6]. Our current theorem has
two advantages. First, it is tight for integer LEF/a.
Second, its proof is much simpler than the seven page
proof of Mitchell [6].

We may extend to the following theorem bounding
the extent of a Voronoi cell; again see Figure 1.

Theorem 2 For every point z € Vor(V), d_l.ﬁ_.'_i“;r"l <

£-1

, where F is any edge containing V and w is the
angle between zV and F.

Proof. In the given triangulation, z lies in the sector
defined by two consecutive edges VW and VX at V,
where W is the vertex that lies in the sector zV F.
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Figure 2: Bounding dist(z, V).

We have two cases. If Zz2VW < o then the fact
that z is closer to V than to W implies zV is short
compared to VW. Otherwise, we we replace AXVW
with Az’VW (2’ defined below, see also Figure 2) and
show that this triangle has all angles at least «, so
that Theorem 1 applies.

Suppose LzVW < «. Since z € Vor(V)
is closer to V than W, we have dist(z,V) <
dist(V, W) /2 cos(£L2VW) < dist(V, W)/k. Thus

dist(z,V) _ dist(z, V) dist(V, W)
|[F|  ~ dist(V,W) |F|

P e T

Otherwise, replace AVWX by Az'VW, where
2’ lies on the ray from V to z and dist(2',V) =
2dist(z, V'); see Figure 2. By assumption LzVW =
LZ’VW > a. Now X lies outside the circle with di-
ameter 'V, hence outside the circle with diameter
VW, so a < LVXW < LVZW. If dist(z,V) <
|V,W| then the theorem easily follows by an argu-
ment similar to the first case. Otherwise £2'VW >
(m = LXVW)/2 > a. Thus Az’VW has all angles at
least «, and hence Theorem 1 applies: dist(z,V) =
0.5dist(2’, V) < 0.5|F|k= < |F|ks-1. 1

3.1 Point set input

For point set input, we now relate local feature size to
the minimum and maximum extent of a Voronoi cell.
Let lfsy denote the local feature size defined by the
vertices T of the triangulation under consideration.
Since T' D P, lfsy < Ilfsp.

Definition [. Let [ denote the shortest possible
length of an edge F' at V from Theorem 1, given the
longest edge E.

Theorem 3 For point set input, any point z €
Vor(V) has lfsy(z) > max(dist(z, V'), 1/2).

Proof. Consider the circle @ defining local feature
size at z. Then V lies inside @. Hence lfsp(z) >
dist(z, V). Also another vertex V' lies on the bound-
ary of @. Hence 2Ifs > dist(V,V’). We may replace
the given triangulation with the Delaunay triangula-
tion (DT) [2] of its vertices. This does not decrease
the smallest angle (the DT maximizes the minimum
angle), and places an edge between V and V' (the DT
places an edge between vertices that share an empty
circle). Since [ is defined to be the theoretical min-
imum edge length, and there is now an actual edge
between V and V', we have dist(V, V') > 1. 1

Theorem 4

/ dz
TR
2€Vor(V) Ifs (z)
6.9

<—+75

m2lnk

+ m(1 + 2In(2/k))

Proof. We integrate radially about V. From Theorem
2 we have an upper bound on the distance of any
point in the cell to V. And Theorem 3 bounds Ifs

below. Hence
<[ [
rdr e/t

=21r/011212/4 / // r

=7r+2/ (’”;‘k +1In(2/k))d8

O

/zevor(v) Ifs2(2) ~ max?(r,[/2)

= 21“'“4- (1 + 2In(2/k)).

By summing the integral over all Voronoi cells we
get the following.

Theorem 5 Any point set triangulation with small-
est angle at least o has at least M vertices with

6.9 1

Note that the linear tradeoff between M and 1/«
is tight for the vertices of a long, thin rectangle and
« greater than the small angle between the diagonals
of the rectangle.
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Figure 3: Point z lies in the zone for edge E.

3.2 PSLG and polygon with holes in-
put

We now consider planar straight-line graph (PSLG)
and polygon with holes input. As before we consider
the local feature size determined by the triangulation,
Ifs7, which is not larger than that determined by the
input, lfsp. However, local feature size is now deter-
mined by disjoint edges as well as vertices. Hence
we must consider the case that local feature size at
a point is determined by two disjoint edges. Because
of this we define zones for edges as well as use the
Voronoi cells of the previous section. (Voronoi cells
define vertex zones, but the medial axis [2] bears lit-
tle resemblance to edge zones because edges must be
disjoint to determine feature size.)

Edge zone. We place a point in an edge zone if its
local feature size circle @ does not contain a vertex.
In this case, there will always be an edge £ = UV
piercing @ such that an edge F' containing V and
an edge G containing U also pierce ©; see Figure 3.
(Proof: Since we have a triangulation, neighboring
edges in @ must share a vertex. If every edge shares
a common vertex, then there are no disjoint faces in
@.) We place z in the edge zone for E.

Theorem 6 For a point z € zone(E), lfsr(z) >
max(dist(z, E), |E|sina/2).

Proof. That Ifs7(z) > dist(z, E) is obvious from the
fact that E passes through @, whose radius is lfsr(2).

For the second relation, the intuition is that the
circle contains most of the altitude of one of the tri-
angles containing E. One of the edges, say F, will be
tangent to @ at f; see Figure 3. Let C be the circle
tangent to F' at f and tangent to G. Let r < Ifs(z) de-
note its radius; see Figure 4. Let e be the point of E
that crosses either the radius to G or to F of C. From
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Figure 4: lfsy(z) > r > |E|sina.

the triangle inequality 2r > dist(e, F') + dist(e, G),
where F' and G now represent the lines through F
and G if necessary. But also dist(e, F') + dist(e,G) =
dist(e, V)sin LEF +dist(e,U)sin LEG > |E|sina. §

Theorem 7 For an edge E,

/ 1 < 4
z€zone(E) lfsg' sina’

Proof. From Theorem 6 we have
1 1
szzone(E) E‘:; < fzezone(E) max2(dist(z,E),|E|sina/2)’

and if we integrate along the length of E' and out to
infinity,

|E|, r|E|sin a/2
<Jo ' (Uo

4 + [ B —
[E[?sin? a |E|sin o/2 dist?(z,E)
— 2 2
- IE|(|E|sma + [E]smo:)’ i

Relating local feature size to the minimum extent
of a Voronoi cell is more complicated than in the point
set case because the edges of triangles opposite a ver-
tex contribute to local feature size, but not to the
Voronoi cell (considering the medial axis directly does
not appear helpful).

Theorem 8 For any triangle with vertez V and op-
posite edge E, dist(E,V) > lcosa. Recall | is the
lower bound on the minimum possible length of an
edge F' at V from Theorem 1, given the actual longest
edge E at V.

Proof. If the closest point of E to V is a vertex,
then their distance is an edge of the triangle, which
by definition has length at least {. Otherwise, their
distance is defined by the altitude A at V. Let F be
the shorter triangle edge containing V. We have two
subcases. If the angle between A and F is less than a,
then |[A| = |F|cos LAF > lcos a. Otherwise, we may
add A as an edge of the triangulation and still ensure
all angles at least a (triangles not containing V may
be ignored). This implies |A| > I from Theorem 1.
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Theorem 9 For PSLG or polygon with holes in-
put, for a point z € Vor(V), lIlfsr(z) >
max(dist(z, V), lcos a/2).

Proof. By definition, the local feature size circle ©
contains V, so the first relation is obvious. Since Q is
the smallest circle at z containing a face disjoint from
V, we have that @ contains a point of a triangle edge
opposite V. Hence 2lfsy > dist(V, E). By Theorem 8
we have dist(V, E) > lcosa. 1

Theorem 10 For PSLG input,

m2lnk

/ ;iz < + 7(1 + 21n(2/k cos a))
sevor(v) lfsz(2)

< 89 +11.9.
1o

For polygon with holes input,

2
2" Ink + m(1 4+ 21In(2/k cos a))

/ dz <
zevor(v) lfs%(2)

< 137 +11.9.
!

Proof. Replace the use of Theorem 3 with Theorem
9 in the proof of Theorem 4. For polygon with holes
input, the angle between two edges at an input vertex
may be obtuse, up to 27. B

We may bound the local feature size integral over
P by summing the local feature size integrals over
the vertex and edge zones of the triangulation. Since
by Euler’s theorem there are at most three times as
many vertices as edges, we may combine Theorem 7
and Theorem 10:

Theorem 11 Given a PSLG P, any triangulation
with all angles at least o has at least M vertices, with

21.5 1
M(—+11.9)> | —.
( o + ) ./Plfszp

For polygon with holes P, we have

M(ﬂ+11‘9)>/ L
(¢4 PlfsP

Note that as in the point set case the linear tradeoff
between M and 1/a is tight for a long, thin rectan-
gle and a greater than the small angle between the
diagonals of the rectangle.

4 Upper bounds on cardinality

We now show that the number of vertices in an (al-
gorithmically generated) triangulation 7 is at most a
constant factor times the integral of 1/Ifs%. We use
this to show that an algorithmically generated trian-
gulation is small if its local feature size is large com-
pared to the local feature size of the input. The fol-
lowing theorems hold for point set, PSLG and poly-
gon with holes input. Recall that lfs; is defined by
the faces of the triangulation, either its vertices (for
point set input) or by its vertices and edges (for PSLG
or polygon with holes input).

Theorem 12 For any non-input verter V,

1
/ —_— > 0.226
Vor(V)nP lfST

Proof. Let R = lfs7 (V') be the distance from V to
the closest point on a face disjoint from V. From the
triangle inequality lfsy(z) < dist(z, V) + R. Since V
is not an input vertex, it must lie interior to P or in
the relative interior of an edge on the boundary of
P. Hence Vor(V) N P must contain a semi-circle of
radius R/2. Thus

/ 1 /" /3/2 rdrdf
vor(vnp ifs: ~ Jo Jo (T +R)?

3 1
> 7r(ln 5 - g) > 0.226.

We may easily extend to the following:

Theorem 13 Any triangulation T has at most N’
non-input vertices, with

0.226N' < / =
PlfST

Combining the results of the two sections we have:

Theorem 14 Suppose a triangulation T with small-
est angle o has s > kylfsp, then the cardinality of
T is less than ko times the cardinality of any other
triangulation with smallest angle at least o, where

ks = k20(1/a).

Proof. From Theorem 4, Theorem 11, and Theorem
13, N’ < ksM with k3 = O(1/a), where M is the
cardinality of any triangulation with smallest angle at
least @ and N’ is the number of non-input vertices of
T.But [T|=N=N'+n<ksM+n<(ks+1)M =
koM. 1



Note ks < k%(222 + 34.2) for point set input, k <
k3(2L + 53.7) for PSLG input and ko < k7(1222 4
53.7) for polygon with holes input.

In Ruppert’s PSLG triangulation algorithm [8] we
can show that for @ = 7/9, ks = 6.3x10% (21.7 from
Theorem 11, and 29,000 from Ruppert [8]). For a =
7/18, k2 = 9.0x103 (41.66 from Theorem 11, and 215
from Ruppert [8]). This is quite large, and might
possibly be improved with better analysis of Ruppert
8], but it still is much better than the factor of 2x102%
found in Ruppert [8].

5 Conclusions

We have proven tight bounds on the cardinality of
a triangulation in terms of local feature size and the
smallest angle, up to constant factors. We have also
shown that two triangulations with similar local fea-
ture size must have similar cardinality, up to a 1/«
factor. This factor is tight: between two parallel in-
put edges, a triangulation consisting of equilateral
triangles and a triangulation consisting of skinny tri-
angles aligned with the edges have the same local
feature size.

For future work, the results may be extended to
higher dimensions. We conjecture that in three di-
mensions ¢(a) = O(1/a) is tight for point set and
other convex input, but that c(a) = O(1/a?) is tight
for non-convex polytopes due to the possibility of fan-
like edges emanating from a vertex.
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