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Abstract

We study various classes of polyhedra that can be
clamped using parallel jaw grippers. We show that
all n-vertex convex polyhedra can be clamped regard-
less of the gripper size and present an O(n + k) time
algorithm to compute all positions of a polyhedron
that allow a valid clamp where k is the number of an-
tipodal pairs of features. We also show that all terrain
polyhedra and rectilinear polyhedra can be clamped
and a valid clamp can be found in linear time.

1 Introduction

Grasping is a well known research area in robotics.
Much research has been done on the problem of grip-
ping or immobilizing an object with a multifingered
hand [3, 7, 10, 11, 13]. Recently, researchers have con-
- sidered the problem of finding a “geometric” grip of
a planar object [14, 6, 1, 15]. Souvaine and Van Wyk
[14] studied the problem of clamping a polygon with
a pair of parallel line segments, motivated by robot
hands known as parallel jaw grippers that are pairs of
parallel plates. Each plate is referred to as a gripper.
Informally, a polygon P is clamped in the plane when
it is “securely” held between the two grippers (mod-
eled in the plane by a pair of line segments forming
the opposite sides of a rectangle) such that P does not
rotate or slip out of the gripper when the gripper is
squeezed. A polygon is called clampable if there exists
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a clamp for every positive length gripper.

Souvaine and Van Wyk [14] showed that all con-
vex polygons are clampable, and conjectured that all
simple polygons are clampable. Capoyleas [6] gave
a slightly weaker definition of clamping and showed
that polygons whose pockets are convex terrains with
respect to the lid are clampable under this definition.

“Albertson, Haas, and O’Rourke [1] defined the class of

free polygons (a polygon is called free if no outward
normal intersects the interior) and showed that free
polygons, sail polygons, and polygons with at most 5
vertices are clampable.

In this paper we address the problem of determin-
ing when a 3-dimensional object (modeled as a simple
polyhedron) is clampable with a parallel jaw gripper
consisting of a pair of parallel plates. First, we ob-
serve that terrain polyhedra and rectilinear polyhedra
are clampable and that a valid clamp can be found in
linear time. The main result of our paper is that all
convex polyhedra are clampable. We give an O(n + k)
time algorithm to find all clamps of an n-vertex con-
vex polyhedron, where k is the number of antipodal
pairs of features. Some proofs and details are omitted
in this extended abstract. For full proofs, we refer the
reader to the technical report [4].

2 Notation and Preliminaries

Let us first introduce some of the terminology we will
be using in this paper.

A polyhedron in E3 is a solid whose surface consists
of a number of polygonal faces. A polyhedron is simple
if its surface can be deformed continuously into the
surface of a sphere. As we are only dealing with simple



polyhedra, we will refer to them as polyhedra in the
remainder of the paper. We will represent a simple
polyhedron by a finite set of plane polygons such that
every edge of a polygon is shared by exactly one other
polygon (referred to as an adjacent polygon) and no
subset of the polygons has the same property. The
vertices and the edges of the polygons are the vertices
and edges of the polyhedron. The polygons are the
facets of the polyhedron.

A polyhedron partitions the space into two dis-
joint domains, the interior (bounded) and the ez-
terior (unbounded). We will denote the open inte-
rior of the polyhedron P by int(P), the boundary
by bd(P), and the open exterior by ezt(P). The
boundary is considered part of the polyhedron; that
is, P = int(P) U bd(P).

2.1 Grippers and Clamps

We give a geometric model of a parallel jaw gripper
and a geometric definition of a clamp.

A parallel jaw gripper is modeled by a pair of rect-
angles forming opposite faces of a rectangular box.
Each rectangle is referred to as a gripper. The size of
a gripper is determined by the length and the width of
the rectangle. Although intuitively it may seem that
the size of a gripper plays a key role in determining
whether or not a polyhedron can be clamped, we will
show that several classes of polyhedra can be clamped
regardless of the size of the gripper.

To give a geometric definition of a clamp, we begin
by first defining the contact set (similarly to [14]).

Definition 1 Given that both grippers touch a poly-
hedron P in some configuration, the contact set of the
configuration is the set of all points p on either gripper
such that for all € > 0, there is a point q that lies in
both the interior of the boz defined by the grippers and
in the interior of P such that dist(p,q) < €. (Thus,
the contact set may be a proper subset of the set of all
points at which the grippers touch polygon P). If each
gripper contains at least one point in the contact set,
then the grippers form a grip on P.

The e-condition for the contact set ensures that the
polyhedron is between the two grippers and avoids
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Figure 1: An empty contact set.

Figure 2: Unstable grip.

configurations such as the one in Figure 1. Although
when a polyhedron is in a grip both grippers touch
the polyhedron and at least some part of the inte-
rior of the polyhedron is contained between them, the
grip is not necessarily secure. By this we mean that
by squeezing the grippers, the polyhedron may rotate
or slip out. Therefore, we wish to define a grip that
“holds a polyhedron securely”. Such a grip will be
referred to as a clamp.

For the purposes of discussion, consider one of the
grippers as a fixed horizontal table and the other grip-
per as a horizontal plate pushing down on the object.
The object is thus immobilized if no point in the up-
per contact set moves under downward pressure. Sup-
pose that the object is gripped as shown in Figure 2.
Clearly, such a grip is unstable and the object will
rotate. However, suppose that the object is a cube
gripped by two opposing faces. The object is then in
static equilibrium and thus immobilized. We present
a geometric definition of a clamp that captures the
difference between these two examples. A discussion
of the mechanics behind this model can be found in

[4].

Definition 2 A grip on a polyhedron P is a clamp
when one of the following two conditions holds:
1. one gripper g contains a point b in its contact
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Figure 3: Only a vertex-face clamp exists.

Figure 4: Only an edge-edge clamp exists.

set and the other gripper g, contains three non-
collinear points c,d, e in its contact set such that
the orthogonal projection of b onto g, falls in the
open triangle(c,d, e).

2. one gripper g, contains a pair of points a,b in its
contact set and the other gripper g, contains a
pair of points c,d in its contact set such that the
orthogonal projection of the open line segment ab
onto ga properly intersects the open line segment
cd.

The tetrahedron in Figure 3 can be clamped under
condition 1 with one gripper on the peak of the tetra-
hedron and the other on its base. The tetrahedron in
Figure 4 can be clamped under condition 2. Notice
that the definition of a clamp does not include the
grip shown in Figure 5 since both upper contact points
project onto a line segment between two of the lower
contact points. A modification of condition 1 such as
— gripper g; contains two points a,b in its contact
set such that there is a point z on the open line seg-
ment ab whose orthogonal projection onto g, falls in
the open triangle(c, d,e) — would have included this
grip but since the objects we consider in this paper do
not need such a grip, we chose to use the simpler def-
inition. For a discussion of a more general definition
of a clamp, we refer the reader to [4].

Figure 5: A grip that is not a clamp.

We say that a polyhedron is clampable if it admits
a clamp for every size of gripper. We say that a poly-
hedron is partially clampable if it admits a clamp with
a gripper of a particular size.

3 Clampable Polyhedra

The definition of a clamp immediately implies that
all terrain polyhedra are clampable. A polyhedron P
is a terrain polyhedron provided that there exists a
face f € P such that Vz € P the open line segment
Ty € int(P) where y is the orthogonal projection of z
onto the plane containing f. Such polyhedra can be
recognized in linear time [2].

Observation 1 Every terrain polyhedron can be
clamped and a clamp can be determined in O(n) time
where n is the number of vertices of the polyhedron.

Terrain polygons can also be recognized in linear
time [2] and under the definition of a clamp given in
[14], they are clampable.

Observation 2 Every terrain polygon can be clamped
and a clamp can be determined in O(n) time where n
is the number of vertices of the polygon.

Every rectilinear polygon has at least 4 extreme
edges (edges incident on the minimum enclosing rect-
angle). Since the two edges adjacent to an extreme
edge are parallel and project orthogonally onto each
other for some positive distance, there exist at least 2
distinct clamps of a rectilinear polygon. Similarly, ev-
ery rectilinear polyhedron has at least 6 extreme faces.
By considering the set of extreme faces in a given di-
rection, the problem reduces to finding a clamp on a
set of rectilinear polygons; but this just requires find-
ing an extreme edge of the set of polygons.



Observation 3 All rectilinear polyhedra and poly-
gons are clampable and a valid clamp can be deter-
mined in O(n) time.

3.1 Convex polyhedra

In this subsection, we establish the main result of this
paper: that all convex polyhedra may be clamped. We
will also give an algorithm to determine all positions
that admit a valid clamp.

To show that all convex polyhedra may be clamped,
we must show that given a gripper of any size, there
always exists at least one position of the grippers that
satisfies one of the two conditions defining a clamp. A
key step towards showing this is to notice that a con-
vex polyhedron can only be gripped at an antipodal
pair of features. Let us define what is meant by an
antipodal pair of features.

A plane supporting a convex polyhedron is a plane
that is tangent to the polyhedron with the polyhe-
dron lying completely in one-half space of the plane.
The set of tangent points will be referred to as the
supporting set. The supporting sets of a pair of par-
allel supporting planes of a convex polyhedron form
an antipodal pair. Since a plane of support can only
meet a convex polyhedron at a vertex, edge or face,
there can only be six types of antipodal pairs: vertex-
vertex, vertex-edge, vertex-face, edge-edge, edge-face
and face-face.

From the definition of a clamp, we see that a vertex-
vertex pair and vertex-edge pair cannot form a clamp.

Therefore, what remains to be shown is that there

always exists an antipodal pair satisfying one of the
two criteria of clamping. There are two special types
of antipodal pairs that immediately come to mind:
the diameter and the width. Since the diameter can
be determined by a pair of vertices (see [12]), we can
rule it out. The width, however, is characterized as
follows.

Lemma 1 [9] The width of a conver polyhedron P
in three dimensions is the minimum distance between
parallel planes of support passing through either an an-
tipodal vertez-face pair or an antipodal edge-edge pair
of P.
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Figure 6: Only a face-edge clamp exists.

As stated, the lemma is somewhat misleading with
respect to clamping. The width can also be deter-
mined by a face-face pair or an edge-face pair, but
since both of these contain a vertex-face pair, they
can be disregarded when considering the width. When
viewing them in terms of a clamp, these other two
pairs do play an important role. The proof of Lemma
1 in [9] shows that the width cannot be determined by
a vertex-vertex pair or a vertex-edge pair. Therefore,
we re-state the lemma as such.

Lemma 2 The width of a conver polyhedron P in
three dimensions is the minimum distance between
parallel planes of support passing through either an an-
tipodal vertez-face pair, edge-edge pair, face-face pair,
or edge-face pair of P.

Lemma 2 in itself is not sufficient to show that
all convex polyhedra are clampable. We now show,
however, that the width always satisfies one of the
two conditions defining a clamp. Although there can
be many positions admitting a valid clamp, there are
some polyhedra (such as the ones depicted in Figures
3, 4, and 6) where the width is the only position defin-
ing a clamp. Before proving this theorem, we need to
establish a few geometric lemmas.

Given two parallel planes P, and P, we denote the
minimum distance between them by Dy,in( P, P2).

Lemma 3 Let P, and P; be a pair of parallel planes
with a point ¢ € P, and a point y € P, such that
line segment T is orthogonal to both P, and P,. For
every other pair of parallel planes Q, and Q, with
@1 containing z and Q. containing y, we have that
Din(@Q1,@Q2) < Din( Py, P2).

Proof: Let z be the orthogonal projection of z on Q5.
Notice that the length of ZZ is Dmin(Q1,@Q2) and the
length of T¢ is Dpyin(P1, P2). However, triangle(z, y, z)
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is a right triangle, with g as hypotenuse. u

For the following lemma, we assume that the sup-
porting plane is the X — Y plane through the origin
and that the convex polyhedron lies above this plane
(i.e. all z coordinates are non-negative). Let L be an
oriented line on this plane and o a point on L. We de-
fine clockwise and counter-clockwise rotation of this
plane as viewed by an observer at o looking in the
direction of L.

Lemma 4 Let C be a convez polyhedron, and P a
supporting plane. For every oriented line L in P such
that no point of the supporting set lies to the left of L,
the plane P can be rotated clockwise about L by some
€ > 0 without intersecting C.

We now have the tools to prove the following theo-
rem.

Theorem 1 The width of a convez polyhedron deter-
mines a clamp for any positive size gripper.

Proof: (sketch) Suppose the width is determined
by an antipodal vertex-face pair that is not an edge-
face or face-face pair. Orient the polyhedron such that
the plane P containing the face f is the X — Y plane
and the polyhedron is above it. Let P’ be the plane
parallel to P containing the vertex v. If the width is
not a clamp, then the vertex v does not project into
the interior of the face f. Let z be the projection of v
onto P. Let L be an oriented line in P containing z
such that f is to the right of L. By Lemma 4, both P
and P’ can be rotated by some ¢, such that they form
another pair of parallel planes of support. However,
by Lemma 3, this contradicts the fact that we had the
width.

A similar argument holds for the other cases. ]

We now turn our attention to computing a valid
clamp. Theorem 1 guarantees that every convex
polyhedron has at least one valid clamp. To find
such a clamp, we rely on Brown’s transformation [5].
Brown’s technique allows one to efficiently compute
all antipodal pairs of features.

Let us briefly summarize this transformation. Given
an n-vertex convex polyhedron tangent to the X —

Y plane with no vertical faces (such an orientation
can always be found), the first step is to divide the
faces into an upper set and a lower set. The outward
normals of the faces in the upper set have a positive
z-component and the outward normals in the lower
set have a negative z-component. This division has
the property that any antipodal pair of features must
have one plane of support tangent to the upper set
and one plane of support tangent to the lower set.

Notice that the slope of a nonvertical plane is really
a two-dimensional vector, so every such plane maps
into a point in R2.

Plane: z=az+by+c—-+(a,b)€]R,2>

Under this point-plane transformation, a face of the
polyhedron maps to a point since only one plane of
support contains a face. Similarly, an edge e of the
polyhedron maps to an edge e’ where each point of ¢’
corresponds to the slope of a plane supporting edge e.
Finally, a vertex of the polyhedron maps to a planar
region, where each point of the planar region corre-
sponds to the slope of a plane supporting the vertex.
Brown outlines a method for computing in linear time
the upper and lower subdivisions corresponding to the
point-plane transformation of the upper and lower set,
respectively.

Consider the convex subdivision overlay of the up-
per and lower subdivisions. A vertex f of one sub-
division that lies in a face v of the other corresponds
to a vertex-face antipodal pair of features because f
corresponds to a face and v corresponds to a vertex.
Similarly, two vertices that coincide correspond to a
face-face antipodal pair. Also, two edges that prop-
erly intersect correspond to an edge-edge antipodal
pair. Finally, an edge of one subdivision containing
a vertex of the other corresponds to an edge-face an-
tipodal pair.

To generate all valid clamps, we first generate all
vertex-face, edge-face, edge-edge and face-face antipo-
dal pairs. Once these pairs are computed, we need to
verify that they satisfy the definition of a clamp. The-
orem 1 guarantees that at least one pair will be valid.

We give a brief outline of the algorithm, which takes
a convex polyhedron P as input.



Algorithm 1: Find all valid clamps.

1. Transform P into two planar subdivisions in O(n)
time as described in [5].

2. Compute the overlay of the two planar subdivi-
sions using Guibas and Seidel’s algorithm [8] in
O(n + k) time where k is the size of the overlay.

3. Examine all vertices and all parallel rays of un-
bounded regions of the overlay to generate all
vertex-face, edge-face, edge-edge and face-face
pairs in O(k) time.

4. Examine all pairs to determine their validity as a
clamp in O(k) time.

5. Output the valid clamps.

Verifying whether an edge-edge pair is a valid clamp
can be done in constant time simply by determining
whether the projection of one edge onto the other
properly intersects it. On the other hand, verifying
any one of the other three types of antipodal pairs for
validity cannot be done in constant time. However,
we are able to amortize the cost over all pairs of an-
tipodal features to achieve O(k) time. For example,
the amount of time we take to check a vertex-face pair
can be charged to the number of vertex-vertex pairs
in that pair. A similar argument holds for the other
two types of pairs. Therefore, we have the following
theorem.

Theorem 2 Every n-vertez conver polyhedron is
clampable and all clamping positions can be computed
in O(n + k) time where k is the number of antipodal
pairs of features.
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