375

Determining Weak External Visibility of Polygons in Parallel

Danny Z. Chen*

Abstract

Given an n-vertex simple polygon P, the problem of deter-
mining the weak external visibility of P is that of deciding
whether there is a line segment s such that s does not inter-
sect the interior of P and that every point on the boundary
of P is visible from some point on s, and (if such a seg-
ment s exists) finding the shortest such segment. In this
paper, we present an optimal parallel algorithm for solving
this problem. Our parallel algorithm runs in O(log n) time
using O(n/log n) processors in the CREW PRAM compu-
tational model. Our approach is very different from that of
the sequential solutions for this problem.

1 Introduction

In this paper, we deal with the weak ezternal vissbility of
simple polygons, which is defined as follows: For a sim-
ple polygon P whose boundary bd(P) is considered to be
“opaque”, two points p and ¢ not in the interior of P are
said to be erternally visible from each other if and only if
the line segment p§ with endpoints p and ¢ does not inter-
sect the interior of P, and p is weakly externally visible from
an object B if and only if p is externally visible from some
point on B.

We consider the problem of determining the weak exter-
nal visibility of a simple polygon (called the WEV problem):
Given an n-vertex simple polygon P, decide whether there
is a line segment s such that s does not intersect the interior
of P and that every point on bd(P) is weakly externally visi-
ble from s, and (if such a segment s exists) find the shortest

such segment, denoted by s*. Intuitively, if P represents.

a forbidden territory of polygonal shape in the plane, then
s* is the shortest linear stretch outside P along which a
guard has to patrol back and forth in order to keep P com-
pletely under surveillance. We present an optimal parallel
algorithm for solving the WEV problem. The parallel com-
putational model we use is the CREW PRAM.

Toussaint and Avis [11] first considered the weak exter-
nal visibility of a polygon. Bhattacharya, Kirkpatrick, and
Toussaint [3] showed that the WEV problem can be reduced
to the problem of computing the shortest transversal of a
set of planar geometric figures. This result [3] and the result
on computing the shortest transversals of sets [2] together
imply that the WEV problem is solvable sequentially in
O(n(log n)?) time. Bhattacharya and Toussaint [5] studied
the special case of the WEV problem in which the polygon
P is convex, and gave an optimal linear time algorithm for
it. Bhattacharya, Mukhopadhyay, and Toussaint [4] then
extended the result of [5] to the general WEV problem (i.e.,
P is a simple polygon), and presented an optimal linear

*Department of Computer Science and Engineering, Uni-
versity of Notre Dame, Notre Dame, IN 46556, USA. E-mail:
chen@cse.nd.edu.

time sequential algorithm- for it. Interesting characteriza-
tion of the WEV problem was given in [5, 4]. However, the
algorithm in [4] seems to be inherently sequential because
it walks, vertex by vertex, along the convex hull of P and,
at each convex hull vertex visited in the walk, dynamically
maintains the “envelop” structure of certain rays associat-
ing with the vertices of P (by adding or eliminating rays).

There is also related work on computing the weak in-
ternal visibility of simple polygons. (For a point p inside
polygon P and an object B, p is said to be weakly inter-
nally visible from B if and only if there is some point ¢ on
B such that the segment 7§ does not intersect the exterior
of P.) Many sequential algorithms and parallel algorithms
for solving various problems on weak internal visibility of
simple polygons have been designed.

Our parallel algorithm for the WEV problem runs in
O(log n) time using O(n/logn) CREW PRAM processors.
The total work (i.e., the time x processor product) of our
algorithm matches the optimal linear bound of [4] for this
problem. This parallel algorithm is obviously optimal. Our
approach is very different from that of [4] since our par-
allel algorithm is based on a divide-and-conquer strategy
and makes use of data structures that support fast parallel
maintenance computation of the envelop structures.

Throughout, when we talk about weak external visibility,
we will often omit the words “weakly externally” if this does
not cause confusion from the context. For example, we will
say “X is visible (resp., non-visible) from line segment s”
instead of “X is weakly externally visible (resp., not weakly
externally visible) from line segment s.”

2 Preliminaries

The input to the WEV problem is an n-vertex simple poly-
gon P; the output is the shortest weakly externally visible
segment s* of P (if s* exists), or an answer “no” (if s* does
not exist). Polygon P is specified by a sequence (v, v2, ...,
vn) of its vertices, in the order in which they are visited by a
counterclockwise walk along the boundary bd(P) of P, start-
ing from vertex v;. Without loss of generality (WLOG), we
assume that no three vertices of P are collinear.

The edge of P joining v»; and vi4; is denoted by e; =
Titi41 (= Vig10:), with the convention that vp41 = v;. A
chain C = (q, g2, ..., qx) consists of line segments §;gis1,
fori=1,2, ..., k~1, and the length of C, denoted by |C|,
is the number of line segments on it. The (directed) chain
along bd(P) from v; counterclockwise to v; is denoted by
bd;,. All the chains considered in this paper are simple. For
adirected chain C = (¢1,¢2,...,4x), k¥ > 3, C is said to make
only left (resp., right) turns iff every subchain of the form
(gi=1, ¢i, gi+1) makes a left (resp., right) turn, 1 < i < k.

A polygon Q is said to be weakly externally visible
[3, 4, 11] if for every point p on bd(Q), there is a ray r
originating at p such that r does not intersect the interior
of Q. For a vertex v of a weakly externally visible poly-
gon Q, the erxternal cone of support (or simply the erternal
cone) of v, denoted by A (v), is the wedge whose apez is

376

CCW ray

Figure 1: Dlustrating the external cone A’ (v) of

vertex v.

at v and whose counterclockwise (resp., clockwise) bound-
ing ray is defined as follows: Let r be a ray originating at
p such that r does not intersect the interior of Q; sweep-
ing r counterclockwise (resp., clockwise) until it for the first
time touches a vertex w of Q with w # v, then the coun-
terclockwise (resp., clockwise) bounding ray of K’ (v) is the
ray v when it touches w (see Figure 1 for an example). We
simply call the counterclockwise (resp., clockwise) bounding
ray of A'(v) the CCW (resp., CC) bounding ray of vertex
v. Bhattacharya, Kirkpatrick, and Toussaint [3] already
showed that any object from which polygon Q is weakly
externally visible must intersect all the external cones of Q.

Note that determining whether an n-vertex polygon is
weakly externally visible and computing the external cones
of all the vertices of that polygon can be done optimally in
parallel, in O(log n) time with O(n/logn) CREW PRAM
processors, by using Chen’s parallel algorithms for deter-
mining weak visibility of simple polygons [6, 8]. Hence we
assume WLOG that the input polygon P is weakly exter-
nally visible and that A'(v;) is available for every vertex
v;.

Our algorithm makes use of concave wedges [4], which we
review below: Suppose two chains B, = (a,q1, q2, ..., qx)
and By = (e, 21, 22, ..., 2,) are given, such that B, (resp.,
Bi) makes only right (resp., left) turns, g« and z, are both
at infinity, and B, N B; = a; we call the region from B,
counterclockwise to By a concave wedge, with apez a, the
left chain By, and right chain B,.

For a planar geometric object B, let CH(B) denote the
convex hull of B. Let the vertices of CH(P) for polygon P,
counterclockwise along bd(CH(P)), be vecy, vea, ..., ven,
where N is the number of vertices of CH(P), and ec; be

the edge vcive,z1 of CH(P). Each edge ec; = T¢;o¢:i471 of.

CH(P), with ve; = v, and vciyy = vs, is a chord of P, and
the region enclosed by ec, and the chain bd,x is an outer
pocket of P, denoted by P; (some of the pockets can consist
of only a line segment).

For every vertex vc; of CH(P), the antipodal chain of vc;,
denoted by AC;, is defined as follows: Let the tangent of
CH (P) parallel to edge eci— (résp., ec;) but not containing
eci—1 (resp., eci) touch CH(P) at vertex s; (resp., t;); then
the chain along bd(CH (P)) from s, counterclockwise to ¢; is
the antipodal chain AC; of vci. Note that AC; N ACiyy =
ti = si41. The vertices of CH(P) on AC, are the antipodal

vertices of vc;, and a pair of vertices vc; and vc;, where .

ve; belongs to AC:, is an antipodal pair of vertices. A line

segment touching an antipodal vertex of vci and tangent to
CH(P) is said to be antipodal to vci. It is known [4] that
the shortest line segment s* from which P is visible must
be antipodal to some vertex of CH(P).

Given polygon P, we can compute its convex hull CH(P)
in O(log n) time using O(n/log n) processors [7]. The an-
tipodal chains of all the vertices of CH(P) can be computed
in O(log n) time using O(n/logn) processors by parallel
merge, based on the fact that the slopes of the edges on the
upper (resp., lower) hull of CH(P) are in sorted order along
bd(CH (P)).

3 Geometric Observations and
Data Structures

In this section, we discuss some useful geometric insights
and data structures needed by our parallel algorithm. Many
of the geometric observations in this section were made by
Bhattacharya, Mukhopadhyay, and Toussaint [4].

The following lemmas are useful to both the sequential
algorithm [4] and our parallel algorithm.

Lemma 1 Let W be a concave wedge bounded by its right
chain B, = (a,q1, q2, --., qx) and left chain B = (a,21,
22, ...,), and CP be a convez polygon contained in W,
with its apezr a also being a vertex of CP. Let r be a fized
ray that originates from a and is contained in W. If bib,
ts a line segment lying inside W and tangent to CP, with
its end verter by (resp., b,) resting on By (resp., B,), then
the length of bib, is a unimodal function of 8, where § is the
angle from r counterclockwise to the line segment bib, with
the point b being the intersection of r and bib, .

Proof. See Lemma 5 of [4]. o

Lemma 2 Let the shortest segment s* that we seek be an-
tipodal to a vertex vc; of CH(P) and s* touch CH(P) at
vertez ve,. Then one end point of s* must be on the CCW
bounding ray of some vertezx on the chain along bd(P) from
vc; counterclockwise to vc; and another end point must be
on the CC bounding ray of some vertez on the chain along
bd(P) from vci clockwise to vc;.

Proof. See Lemma 6 of [4]. a

For two vertices v and w of P, v # w, we denote the
chain along bd(P) from v counterclockwise (resp., clock-
wise) to w by Cecw(v,w) (resp., Ccc(v,w)), and the set
of the CCW (resp., CC) bounding rays of all the vertices
of P on Ceew(v, w) (resp., Cee(v,w)) by Recw(v, w) (resp.,
Rec(v,w)). Based on Lemma 2, Bhattacharya, Mukhopad-
hyay, and Toussaint [4] used in their algorithm a geometric
structure called envelop, which we define below:

Definition 1 For two vertices v and w of P, let A be
the arrangement formed by the rays in Rccw(v,w) (resp.,
Rec(v, w)) from the chain Cecw (v, w) (resp., Cec(v, w)). Let
c be a cell of the arrangement A characterized as follows:
The vertez v is on the boundary of c; starting a walk from v
along the CCW (resp., CC) bounding ray of v, then the walk
is on the boundary of c and the interior of c is to the right
(resp., left); the walk stays on the boundary of ¢ towards
infinity, by making a right (resp., left) turn when a vertez
of A is met. The envelop of Rccw(v,w) (resp., Rec(v,w)),
denoted by Envccw(v, w) (resp., Envcc(v, w)), is the chain
along which the walk travels.

Figure 2: The CCW envelop Env.e,(v,w) for the
chain Ceep(v, w).

We call Enveew(v, w) (resp., Envec(v, w)) a CCW (resp.,.

CC) envelop. Note that Envccw(v, w) (resp., Envec(v, w))
is either a single ray or a chain that makes only right (resp.,
left) turns. An example of CCW envelops is given in Figure
2.

It is shown in [4] that, in order to find segment s”, one can
consider every antipodal pair of vertices v and w of CH(P)
and compute the shortest line segment s, that (1) is an-
tipodal to », (2) is tangent to CH(P) and touches w, and (3)
has its two endpoints resting respectively on Envecw (v, w)
and Env. (v, w). From such a segment s;,, P is certainly
visible, and s* is the shortest among such segments s;,,.
The following lemma is a generalization of the statement
above.

Lemma 3 For a vertex vc; of CH(P), let its antipodal
chain AC, begin at verter s, and end at vertez t; of CH(P).
Let u (resp., w) be a vertez of P on the chain Cccw(ve:, 3i)
(resp., Cec(vci, ti)). Then the shortest line segment that is
antipodal to vci (by touching a vertex of CH(P) on AC;),
that is tangent to CH(P), and that has its two end points
resting respectively on Env.cw(vei, w) and Envcc(vei, u), is
the shortest segment antipodal to vc; from which P is visible.

Proof. See Lemma 10 of [4]. a

The sequential algorithm in [4] computes and maintains
the envelop structure in the following way: (i) Compute,
for every outer pocket of P (say from vertex v; counter-
clockwise to vertex vk), the envelops Envccw(v;, vx) and
Envcc(vk,v;), by scanning along the chain bd,x; (ii) scan
along the boundary of CH(P), maintaining the envelops so
that when each antipodal pair of vertices v and w is encoun-
tered during the scanning, Envccw(v,w) and Envcc (v, w)
are available for computing the segment s3,. This approach
seems to be very sequential and cannot be used by our paral-
lel algorithm. Therefore, we must use a different method for

computing and maintaining the envelops, and for obtaining

the segment s;,, when Env.cw(v,w) and Envc(v,w) are
given. We need the following lemma from [4].

Lemma 4 Let C' and C” be two chains on bd(P) whose
interior is disjoint from each other. Then the envelop for
the CCW (resp., CC) bounding rays of the vertices on C’
can intersect the envelop for the CCW (resp., CC) bounding
rays of the vertices on C” at most one time.

Proof. See Lemma 8 of [4]. o

377

The following properties are crucial to our parallel algo-
rithm.

Lemma 5 For two vertices v and w of P, let (ri,, ri,,
..., 7i,) be the sequence of rays whose portions are vis-
ited, in this order, by a walk along Envcw(v,w) (resp.,
Envcc(w,v)) by starting at v (resp., w), where r;; is the
CCW (resp., CC) bounding ray of vertez vi; of P. Then a
walk along the chain Cecw (v, w) (resp., Cec(w,v)) of bd(P)
by starting at v (resp., w) visits the vertices in {vi; |
7=1,2,...,k} in the same order as the sequence (7i,, 7i,,
.evy Tiy), i.€., in the order of (viy, viy, ..., vi,).

Proof. We only prove the case of Envcew(v, w) (the other
case is proved similarly). Note that by the definition of
envelops, the first edge of Envccw(v,w) is on the CCW
bounding ray of vertex v; hence r;, is the CCW bound-
ing ray of v. The walk along C.cw (v, w) certainly visits v
first. Assume that the lemma does not hold. Then there
must be two rays ri, and ri,, with 1 < a < b < k, such
that the walk along C.cw (v, w) visits vi, before v, , i.e., the
chain Cccw(v,vi,) does not contain the vertex v;,. Con-
sider the envelop Envccw(v,vi,) and the envelop consist-
ing of only the CCW bounding ray of vi,. The above as-
sumption implies that the CCW bounding ray of v, inter-
sects Envccw (v, vi,) at least twice because in the walk along
Envcew(v, w), ri is visited after r;; and before r;,. But this
contradicts with Lemma 4. Hence the lemma holds. =]

Corollary 1 Let C be a chain on bd(P) and C' a subchain
of C. Let Env and Env' be the envelops formed by the
CCW (resp., CC) bounding rays of the vertices on C and
C’, respectively. Then Env N Env' is either empty or a
connected component.

Proof. An immediate consequence of Lemma 5. o

Our parallel algorithm makes use of several data struc-
tures: (1) The rank trees, for computing and storing the
envelop structures (see [7, 8, 10] for a detailed description
of rank trees and the parallel operations that they support),
and (2) the tree of arrays [6, 8], for handling the mainte-
nance of envelops when the parallel algorithm modifies the
envelop for a vertex on CH(P) and then uses the updated
envelop for other vertices. More discussion on these data
structures will be given in the next section while we present
the algorithm.

4 The Parallel Algorithm

* The idea of our parallel algorithm is as follows: First com-

pute several global envelop structures (Phase One); then
use these global envelops to obtain (the relevant portions of)
the envelops needed by every vertex on CH(P), in order to
apply Lemma 3 (Phase Two); finally, compute the short-
est segment antipodal to every vertex on CH (P) from which
P is visible, based on Lemmas 1 and 2 (Phase Three).
Hence our algorithm for the WEV problem consists of three
phases, which we present one by one in this section. Among
the three, Phases One and Two are more difficult.

4.1 Phase One

Our computation of envelops makes use of rank trees, with
the edges of the envelops being stored at the leaves of the
trees, one edge per leaf. It is well-known that a rank tree
storing certain geometric structure (e.g., envelop, visibility

378

chain) of a chain C is of height O(log|C]). The follow-
ing lemma summarizes the key subroutine for this phase.
WLOG, we only discuss the envelops which are formed by
CCW bounding rays of the vertices of P (the CC envelops
are handled in a similar way).

Lemma 6 Given two interior-disjoint chains C' and C”
on bd(P) of length O(k) each, let Env(C') and Env(C")
respectively be the CCW envelops of C' and C", each stored
in a rank tree. Then by using k° processors, where c is a
constant with 0 < ¢ < 1, it is possible to decide whether
Env(C') and Env(C") intersect each other, and find the
intersection if they do, in O(log k) time.

Proof. Let ¢’ (resp., ¢”) be the edge on Env(C’) (resp.,
Env(C")) adjacent to the point at infinity. Let r(s) be the
CCW bounding ray from which an edge s of a CCW envelop
belongs. It is easy to see that if the two envelops intersect
each other, then either r(e’) must intersect Env(C") once
(by Lemma 4) or r(e”) must intersect Env(C') once. Since
the envelops make only right turns, it is trivial to find, in
O(log k) time with k° processors, whether a ray intersects
an envelop of size O(k) stored in a rank tree.

Now suppose Env(C’) and Env(C") do intersect each
other once, and we want to compute their actual intersec-
tion point. We repeat the following procedure until the
intersection is found:

Choose k°/? edges on Env(C’) such that these edges to-
gether partition Env(C’) into ()(k‘/z) subchains of

equal length. For every chosen edge e on Env(C'),
compute the intersection of the ray r(e) with Env(C")

in O(log k) time using k°/? processors. The type of.

the intersection between r(e) and Env(C") (i.e., r(e)
intersects Env(C") before, on, or after the portion
e of r(e)) indicates whether the intersection between
Env(C') and Env(C") occurs before, on, or after the
edge ¢ on Env(C’). Hence we can decide on which one
of the O(k/?) subchains of Env(C’) the intersection
between Env(C’) and Env(C") lies.

By repeating such a procedure O(c) = O(1) times, the inter-
section between Env(C’) and Env(C”) is located. There-
fore, the intersection is computable in O(log k) time using
k¢ processors. a

Lemma 7 Given two interior-disjoint chains C' and C"
on bd(P) of length O(k) each, let Env(C’) and Env(C")

respectively be the CCW envelops of C' and C", each stored .

in a rank tree. Then by using one processor, it is possible to
decide whether Env(C') and Env(C") intersect each other,
and find the intersection if they do, in O((log k)*) time.

Proof. Use the same idea as Lemma 6. Then it is easy to
see that we need to repeat the procedure O(log k) times by
using one processor, with each iteration taking O((log k)?)
time. =]

Even though a more efficient procedure may be possible
for implementing Lemma 7, it is sufficient for our algorithm
to use Lemma 7.

Phase One s based on a divide-and-conquer algorithmic
structure similar to those of (1, 7, 8], which we outline below:

Input. A chain C on bd(P) with |C| = m, and a positive
integer d. .
Output. The CCW envelop Envccw(C) of C.

Case 1.1. If m < d, then compute Envccw(C) (stored in a
rank tree) in O(m) time with one processor.

Case 1.2. If d < m < d* then partition C into
two subchains Ci; and C: of equal size, and recur-
sively compute Envccw(Ci) and Envecw(C2), in paral-
lel. Then compute Envccw(C) from Envecw(Ci) and
Envcew(Cz), with m/d processors and in O((log d)*)
time.

Case 1.3. If m > d*, then partition C into g = (m/d)'/?
subchains C,,C;, ..., Cg of size m?/2d*® each.
Then recursively solve the g subproblems in paral-
lel. Finally, compute Envecw(C) from Envccw(Ch),
Enveew(C2), ..., Envecw(Cy), with m/d = ¢g* proces-
sors and in O(log m) time. (Some additional computa-
tion will also be performed within the same complexity
bounds, which will be discussed later in this subsec-
tion.)

It has been shown [1, 7, 8] that, if we process the various
cases of the outline given above within the claimed complex-
ity bounds, then a procedure with such an outline will run in
O(d+log m) time with O(1+m/d) processors. Therefore, a
call to the above procedure with input (C,log n), where |C|
= O(n), takes O(log n) time using O(n/ log n) processors.

Phase One consists of two steps: (1) Compute the CCW
envelop for every outer pocket of P, and (2) compute O(1)
global envelops from the envelops of the outer pockets of P.
By using the sequential algorithm [4] in Case 1.1, Lemma
7 in Case 1.2, and Lemma 6 in Case 1.3, Envecw(C) for
the chain C = bd(P) N Pi, where P; is an outer pocket of
P, can certainly be obtained by the above procedure within
the claimed parallel bounds. What we need to discuss are
(a) the “additional computation™ in the outlined procedure,
and (b) the computation of O(1) global envelops.

Since Case 1.2 is a simple case of Case 1.3, it is suffi-
cient for us to discuss Case 1.3. Assume that Env..w(C1),
Enveew(C2), ..., Envecw(Cy) are already available, each
stored in a rank tree. We construct a complete binary
tree Teew(C) whose leaves from left to right are associated
with chains Ci, Cz, ..., C,, respectively. Every node u of
Tecw(C) represents the CCW envelop Envcew(B(u)), where
B(u) is the union of the chains C; associated with the de-
scendent leaves of u. For example, the leaves of T¢cu(C)
represent Envecw(C1), Envecu(C2), ..., Envecw(Cy), and
the root r00t(Tecw(C)) of Tecw(C) represents Envecw(C).
Note that 700t(Tecw(C:)) of the tree Tccw(Ci) returned by
the recursive call on the chain C; becomes a leaf of Tecw (C).

Let the parent of a node u in Tecw(C) be parent(u). By
Corollary 1, both Envecw(B(u)) N Enveew(B(parent(u)))
and
Envecw(B(u)) = (Enveew(B(8)) N Envecw(B(parent(u))))
consist of a connected component. Our procedure not only
computes Envccw(C), but also computes Enveew(B(u)) —
(Envecw(B(u)) N Envecw(B(parent(u)))), stored in a rank
tree, for every non-root node u of Tecw (C). The next lemma
helps the computation for Envccw(B(8)) — (Enveew(B(u))
N Envc.w(B(parent(u)))).

Lemma 8 Let u, w, and z be three nodes of Tcew(C)
such that w is an ancestor of u and z an ancestor of
w. Then Envecw(B(u)) N Envecw(B(w)) is a connected
component; furthermore, Envcew(B(u)) N Envecw(B(2)) C
Envecw(B(u)) N Envecw(B(w)).

Proof. It follows immediately from Corollary 1. a

We can view the chains Envecw(B(u)) N Envecw(B(2))
and Envecw(B(u)) N Envecw(B(w)) in Lemma 8 as inter-
vals on the chain Envccw(B(u)). Then Envecw(B(u)) —
(Enveew(B(u)) N Envecw(B(parent(u)))), for every non-
root node u of Tecw(C), can be computed as follows.

For every Envccw(C.) and every node u such that u
is a proper ancestor of the leaf associated with C, in
Teew(C), compute Envecw(C.) N Envccw(B(u)). Even
by using a brute force method, each Env.w(C,) has to
be involved with O(log m) ancestors in Tecw(C), which
respectively have g, g/2, 9/4, ..., | descendent leaves.
Hence each Envccw(C:) has to be involved in the com-

putation with at most O(g) other Envecw(C,)’s, with g*-

processors at its disposal. Thus Lemma 6 can be ap-
plied to compute the intersection between every pair of
Envecw(Ci) and Envecw(C,;). Having found the intersec-
tion between Envc.w(Ci) and Envcew(C,), where C, is as-
sociated with another descendent leaf of the node u, it is
trivial to obtain Envccw(Ci) N Envccw(B(u)) from these
intersection points on Envccw(Ci). Given the interval for
Envecw(Ci) N Envecw(B(u)), for every proper ancestor u
of the leaf storing Envccw(C:), we have enough processors
to sort these O(logm) intervals in O(log m) time. Also
in O(log m) time, we can decide which connected portion
of Envecw(C:) belongs to Envecw(B(u)) — (Enveew(B(u))
N Envc.w(B(parent(u)))) for every proper ancestor u of
the leaf for C; in Tccw(C), based on Lemma 8. The rank
trees storing these connected portions of Envecw(Ci) can
be obtained by applying the parallel split operation [7]
on the rank tree storing Envccw(Ci); the rank tree for
Envecw(B(n)) = (Envecw(B(u)) N Envecw(B(parent(u))))
can be obtained by using the parallel concatenation op-
eration [7] on the pieces that form FEnvccw(B(u)) -
(Enveew(B(u)) N Envecw(B(parent(u)))). The parallel
split and concatenation operations both take O(log m) time.
Hence the information stored in Teew(C) can be computed
in O(log m) time with g* processors.

Next, we show how to compute at most six global envelops
for bd(P). In order to do that, we partition bd(P) into at
most three chains, such that for each such chain C’, the
end vertices of C' are on CH(P) and no vertex vc, on C’
N CH(P) has its antipodal chain AC, that intersects the
interior of C’ (i.e., C' N AC, consists of at most the end
vertices of C’). The observations below follow immediately
from the definition of antipodal vertices.

o For a vertex vc; of CH(P), let vck = s; and C’ be the
chain along bd(P) from vc, counterclockwise to vcx.

Then there is no vertex vc, on CH(P) N C’ such that

AC, intersects the interior of C’.

e [t is possible to partition bd(P) into at most three such
chains C’ such that the end vertices of C’ are both on
CH(P).

Given the antipodal chains of the vertices on CH(P), the
partition of bd(P) can be easily done in O(1) time with one
processor, as follows: Suppose vck = s;; then simply par-
tition bd(P) using vertices vci, vck, and sk, resulting in at
most three chains on bd(P). Let C’ be such a chain from
the partition of bd(P); then Envccw(C’) and Enveew(C) are
a pair of the global envelops that we would like to compute,
where C = bd(P) — C'. We complete the exposition of
Phase One by discussing briefly how to compute the en-
velop Envecw(C) and the tree Teew (C) when the CCW en-
velops of all the outer pockets of P whose end vertices are
both on C are available (the computation for Envccw(C’)
and Teew(C') is similar).

The computation of Envecw(C) and Tecw(C) is very sim-
ilar to the computation of the CCW envelop of an outer
pocket of P, with only one main difference: The sizes of the
outer pockets on € can vary. WLOG, let the outer pockets
along C be Py, P2, ..., Px. Several minor changes of the
procedure for computing the envelop of an outer pocket are
needed:

379

(i) The pockets on C become the leaves of the recursion
(their CCW envelops are already given).

(ii) In the divide stage, compute sum; = Z;__.‘ |P5| (by
parallel prefix), and divide the chain C at Pi.; N P
if sumi~; < j*m?/*d*/® < sum, for some integer j =
1,2,...,9.

(ii) “Schedule” for every pocket P; of C so that its
CCW envelop can participate in the computation of
Envecw(C) at the appropriate level of the recursion.
Let m = |C] at level 0 of the recursion. Then the fol-
lowing can be easily proved by induction: At the i-th
level, i > 1, the chain size is O(m/d*=f()), where
f(1) = (2/3)'. Therefore, all we need to do is to let
the CCW envelop of P, participate in the computa-
tion of Envecw(C) at the i-th recursion level such that
mI @ =10 < |P| < mIC=Dg=I=n),

(iv) The tree Tecw(C) is built in the same way. I.e., build
a complete binary tree whose leaves are either the
envelops returned from recursive calls or envelops of
pockets of C, regardless of the sizes of the chains from
which these envelops were obtained. Tccw(C) so con-
structed is obviously of height O(log m) = O(log n).

This concludes the discussion of Phase One.

4.2 Phase Two

Let C’' be a chain obtained in Phase Omne such that
there is no vertex vc, of CH(P) N C' whose AC, inter-
sects the interior of C’, and let C = bd(P) — C'. This
phase accomplishes the following task: Given the envelops
Envecw(C), Envecw(C’), Enve(C), and Env.(C’), and
the trees Tecw(C') and Tec(C') (the trees Tecw(C) and
Tec(C) are actually not needed), obtain the relevant por-
tions of the CCW and CC envelops needed by every vertex
of CH(P) N C’', so that Lemma 3 can be applied. The
procedure for this task is based on the tree-of-arrays data
structure used in [6, 8].

Below we first discuss the main idea and the tree-of-
arrays structure for our solution to this phase; then we show
how this data structure is used in a divide-and-conquer ap-
proach, to compute the relevant portions of the CCW and
CC envelops needed by all the vertices of CH(P) N C’. As
in the previous subsection, we focus on the case with the
CCW envelops (the CC envelops are computed in a similar
way).

4.2.1 Main Idea and Tree-of-Arrays Struc-
ture

In Phase One, we build the binary tree Tccw(C’') which
is of height O(log n) and has O(n/d) = O(n/log n) nodes.
The root of Tecw(C') stores Envccw(C'). Each non-root
node u of Tccw(C') stores at most one connected envelop
Envecw(B(u)) = (Envecw(B(u)) N Envecw(B(parent(u))))
with a rank tree, where B(u) is the union of the subchains of
C' associated with the descendent leaves of u. Hence there
are altogether O(n/logn) envelops stored at the nodes of
Tecw(C'), and the total sum of the sizés of the envelops
stored at all the nodes of Tecw(C’) is O(n).

Let the chain C = bd(P) — C' be from vertex z counter-
clockwise to vertex z', i.e.,, C N C' = {z,z'}. The idea for
Phase Two is based on the following observations.

(I) Let vci be a vertex of CH(P) N C’ and vcx be a ver-
tex of CH(P) N C. Then by Lemma 3, the relevant

380

portion of Envccw(ves, vex) for computing the short-
est segment antipodal to vc, from which P is visi-
ble can be obtained from Envccw(vci,z’'). Further-
more, the envelop Envccw(vei,z') can be partitioned
into two parts: One is a subchain of Envccw(z,2') =
Envecw(C) (which is already available); another is a
subchain of Envcew(ve,, z) (which may not be readily
available but its information is stored in Tecw(C’)).

(II) Let ve; and vc, be two vertices of CH(P) N C’', i
J. Then the relevant portion of the CCW envelop
needed by vc; is interior-disjoint from that needed by
vc,. This implies that the total sum of the sizes of the
relevant portions of the CCW envelops needed by all

the vertices of CH(P) N C’ is O(n). We only show that’

the portions on Envccw(C) needed by vei and vc, are

" interior-disjoint (the case with Envcc.(C’) is proved
in a similar way). Recall that the antipodal chain AC:
of vc; is defined by vertices s; and t,, where s; (resp.,
t;) is the vertex at which the tangent t(eci—1) (resp.,
t(eci)) parallel to the edge eci—; (resp., ec;) but not
containing eci—; (resp., eci;) touches CH(P). Suppose
the edges of CH(P) are all directed counterclockwise.
Let r(t(eci-1)) (resp., r(t(eci))) be the ray originat-
ing from s; (resp., t;), parallel to ec,~; (resp., ec;),
and having the same direction as ec,—; (resp., ec;).
Then the portion on Envccw(C) needed by vc; is con-
tained by the subchain of Envccw(C) from the point
hit by r(t(eci-1)) to the point hit by r(t(eci)). The
proof follows from the facts that the polar angles of the
rays r(t(eci—1)) and r(t(eci)) for all the vertices vc; of
CH(P) N C’ are in sorted order along bd(CH (P)) and
that Envccw(C) makes only right turns.

Based on these observations, the idea for Phase
Two is as follows: Compute the relevant portions on
Fnvccw(vei,2') for the vertices ve; of CH(P) n C’
that are respectively the subchains of Env..w(C) and
Envccw(vei, z); this computation is done by tracing the tree
Tecw(C') in a top-down fashion, level by level, and con-
structing (the relevant portions of) Envccw(vci, z) for the
vertices vc; associated with each level of Tecw (C').

Observation (I) above implies that the way that our
procedure uses the envelop Env.cw(C) is static. Hence
we simply convert Env...(C) from a rank tree represen-
tation into an array representation. Let the array storing
Enveew(C) be A(C). Obtaining A(C) from the rank tree
storing Env.cw(C) can be easily done in O(log n) time using
O(n/log n) processors [8, 6, 10].

Also by Observation (I), we need

to compute

Envccw(vei, z) by using the information stored in Tecw(C”)..

In order to compute Envccw(vc,, z) efficiently, we would like
to convert the rank trees stored at the nodes of Tecw(C’) into
arrays, i.e., each envelop stored in a rank tree of Tecw(C')
is converted into an array. This conversion operation can
also be done in O(log n) time using O(n/logn) processors
(8, 6]. For every pocket P; on C’, let chain C; = P, N P. We
let the leaves of Ticw(C') be the nodes that are associated
with the chains Ci, and store each envelop Envc.w(C:) in
an array. We still use Tccw (C’) to denote the tree whose
envelops are stored in arrays. Tecw(C’) is the tree of arrays
that we need.

4.2.2 Algorithm for Phase Two

The algorithm for this phase traces the tree Teew(C’) in a
top-down fashion, level by level, and constructs the relevant
portions of Envccw(z, z’) and Envecw(ve,, z) for the vertices

vei of CH(P) N C’ that are associated with each level of

Tecw(C'). Since the height of Tecw(C') is O(log n), we must
process the majority of the levels of Tecw (C') in O(1) time
per level. The tree-of-arrays data structure enables us to
achieve that. This parallel technique has been used in [8, 6]
to compute the cones of support of a weakly visible polygon.
The details of this procedure are left to the full paper.

4.3 Phase Three

Given the relevant portions of the CCW and CC envelops
needed by every vertex v of CH(P), this phase applies Lem-
mas | and 2 to compute the shortest segment antipodal to
v from which P is visible. The relevant portions of the en-
velops for v are represented by a set of arrays (obtained
from Phase Two). The algorithm for this phase is based
on an idea for parallel search in arrays and it is relatively
simple comparing to the previous two phases. The details
of this procedure are also left to the full paper.

References

[1] M. J. Atallah, D. Z. Chen, and H. Wagener. “An op-
timal parallel algorithm for the visibility of a simple
polygon from a point,” Journal of the ACM, 38 (3)
(1991), pp. 516-533.

[2] B. K. Bhattacharya, J. Czysowicz, P. Egyed, G. T.
Toussaint, 1. Stojmenovic, and J. Urrutia. “Computing
shortest transversals of sets,” Proc. 7th Annual ACM
Symp. Computational Geometry, 1991, pp. 71-80.

[3] B. K. Bhattacharya, D. G. Kirkpatrick, and G. T. Tou-
ssaint. “Determining sector visibility of a polygon,”
Proc. 5th Annual ACM Symp. Computational Geome-
try, 1989, pp. 247-254.

[4] B. K. Bhattacharya, A. Mukhopadhyay, and G. T.
Toussaint. “A linear time algorithm for computing the
shortest line segment from which a polygon is weakly
externally visible,” Proc. Workshop on Algorithms and
Data Structures, 1991, Ottawa, Canada, pp. 412-424.

[5] B. K. Bhattacharya and G. T. Toussaint. “Comput-
ing shortest transversals,” Tech. Report SOCS 90.6,
McGill University, April 1990.

[6] D. Z. Chen. “Parallel techniques for paths, visibility,
and related problems,” Ph.D. thesis, Technical Report
No. 92-051, Dept. of Computer Sciences, Purdue Uni-
versity, July 1992.

[7] D. Z. Chen. “Efficient geometric algorithms on the
EREW-PRAM,” Proc. 28th Annual Allerton Conf.
on Communication, Control, and Computing, Monti-
cello, Illinois, 1990, pp. 818-827. Accepted to [EEE
Trans. on Parallel and Distributed Systems.

(8] D. Z. Chen. “An optimal parallel algorithm for detect-
ing weak visibility of a simple polygon,” Proc. 8th An-
nual ACM Symp. on Computational Geometry, 1992,
pp. 63-72. Accepted to International Journal of Com-
putational Geometry and Applications.

[9] D. Z. Chen. “Optimally computing the shortest weakly
visible subedge of a simple polygon,” Lecture Notes in
Computer Science, No. 762: Proc. of the Fourth An-
nual International Symp. on Algorithms and Compu-
tation, Hong Kong, December 1993, pp. 323-332.

[10] M. T. Goodrich. “Finding the convex hull of a sorted
point set in parallel,” Inform. Process. Letters, 26
(1987/88), pp. 173-179.

[11] G. T. Toussaint and D. Avis. “On a convex hull algo-
rithm for polygons and its applications to triangulation
problems,” Pattern Recognition, 15 (1) (1982), pp. 23—
29.

