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Abstract

A polygon is called k-guardable if it is
possible to find a collection of points Q in the
interior of the edges of P such that every point
in P is visible from at least k elements in Q
and no edge of P contains more than one
element in Q. In this paper we prove that
every simple polygon can be 2-guarded with at
most n-1 guards. We prove that any simple
polygon wilth n vertices can be 1-guarded using
at most| %~ | guards. We also prove that not
every polygon with holes is 2-guardable but
that they are always 1-guardable. Our proofs
lead to linear time algorithms to find 1- and 2-
guarding collections for simple polygons.

1. Introduction

How many guards are necessary, and
how many are sufficient to patrol an art
gallery—especially a modern one, with its
numerous alcoves, corners, and narrow snake-
like passages? Fueled by the modern interest in
combinatorial and computational geometry,
this apparently naive question of
combinatorial geometry has, since its
formulation [V. Klee (1973), cf. R. Honsberger
(1976)], stimulated a rush of papers, surveys,
and even a book [J. O'Rourke (1987)], most
written in the last decade.

The mathematical beginnings are found
in the well-known gem of a theorem by V.
Chvétal (1975) according to which L%l
stationary guards are occasionally necessary
and always sufficient. A guard or simply, a
light is a stationary light source which can

survey 360° about its fixed, designated position.
In this formulation the gallery, having
straight walls, is a polygon of n vertices and,
for every point of the polygon and its interior,
there is a light (guard) which illuminates it.

There are numerous other interesting
variations of art gallery problems, for instance,
traditional orthogonal art galleries all of
whose walls are either horizontal or vertical,
in which case L] guards are necessary and
sufficient [KKK83]; mobile guards, each of
whom patrols from along a line segment within
an n-vertex polygon, of whom | 3] are necessary
and sufficient [O'Ro83]. In [CRUZ] it is shown
that a rectangular art gallery with n exposition
rooms (that is one housed in a rectangular
building subdivided into n rectangular rooms)
can always be guarded with exactly er-‘_l guards.
In a different direction, Fejes Toth [FeTo077] has
proved that any family of n disjoint closed
convex sets on the plane can be illuminated
with at most 4n-7 lamps. Recently, variations
to guarding problems in which restrictions on
the angle of illumination, or visibility of the
guards are imposed have been introduced. In
these floodlight illumination problems, the
assumption that a guard can see 360° about its
fixed, designated position is no longer valid
[BGLOSU93, CRU93].

In this context we study the following
variation to guarding problems proposed by A.
Lubiw at the open problem session of the Fourth
Canadian Conference in Computational
Geometry: Let P be a simple polygon with n
vertices. We say that P is k-guardable if it is
possible to find a set of points Q consisting of
interior points of edges of P such that every
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point of P is visible from at least k elements
in Qand no edge of P has more than one
element in Q. For what values of k is every
simple polygon k-guardable? It has been
observed by T. Shermer [She92] that comb
polygons [Chv75, O'R87] are not 3-guardable;
such a polygon is shown in Figure 1.

A polygon which is not 3-guardable
Figure 1

In this paper we prove that every simple
polygon with n vertices can be 2-guarded using
at most n-1 points. We also prove that any
simple polygon with n vertices can be 1-guarded
with at most 5] guards. These bounds are
tight up to an additive constant. We prove
that any polygon with one hole is also 2-
guardable. We also prove that every polygon
with holes is 1-guardable, and that it is not
true that every polygon with holes is 2-
guardable.

2. One and Two-Guarding Simple

Polygons

In this section, we consider the problem
of 1-guarding and 2-guarding simple polygons.
To facilitate our presentation, we will assume
that a is not contained in the line joining any
two vertices of P and that for every edge e of P
the line containing e contains no vertex of P
other than the end vertices of e. This condition
may be easily dropped, leaving our result
unchanged. We proceed now to prove our first
result:

Theorem 1: Every simple polygon can be two-
guarded with at most n-1 guards.

Proof:. Let a be any point on the interior of an
edge of P and let P, be the visibility polygon
of a, that is the set of all points q € P such
that the line joining a with q is contained in

P. Notice that P may contain vertices that
are not vertices of P and that some edges of P
may have up to two vertices of P, in their
interior. (See Figure 2.) Let v be a vertex of P,
that is not a vertex of P. The line joining v to
a contains a vertex of P, which we shall denote
by va. Let e be an edge of P that has two
vertices of Pj in its interior, say b and c.
Notice that b and c3 are mutually visible in
Pa (the triangle formed by a, b and ¢ s
contained in Pa). Thus the line segment joining
them is contained in P3. Remove from P, the
triangle determined by b, c and c3. Apply this
procedure to all edges of P containing two
vertices of P, that are not vertices of P and
name the resulting polygon P;. Place a guard
at all the vertices of P; that are not vertices of
Pa. If an edge e of P is completely visible
from a place one guard in the middle of it and
finally place one guard at the point a itself.
(See Figure 2).

a
Figure 2

Observation 1: All points in Pjare 2-guarded

(by a and at least one of the other guards
placed on the boundary of P}).

Clearly P-P, can be "broken” into
several simple polygons P1,...,Px with disjoint
interiors with the property that each one of
them contains exactly one vertex that is not a
vertex of P. We will denote such a vertex by
v(i), i=1,...,k. Notice that some pairs of
elements of Py,... Px may have at most one point
in common, i.e. a vertex of Pé that is not a



vertex of P. Now we process each Pj using the
following recursive procedure:

Procedure 2-Guarding (P;, v(i))

Calculate the visibility polygon Pyj)
of v(i) in Pj. Two cases arise:

a) Pj=Py(j). In this case place a guard in
the middle of each edge of Py(j) except for the
two edges of Py(j) containing v(i).

b) Py(i)#Pj. Three cases are considered
now:

i) Anedge e of P; completely visible
from v(i) . Place a guard in the middle of e.

ii) An edge of Pj containing exactly
one vertex v of Py(j) thatis nota vertex of P;.
Place a guard at v.

iii) For each edge e of Pj containing
two vertices of Py(j), say b and c, thatare not
vertices of Pj proceed as follows: Locate the
reflex vertices ba(j) and cy(j) of Pj contained
in the interior of the line segment joining v(i)
to b and c respectively. Join ba(j) to c witha
line segment and delete from Pyj) the triangle
with vertices b, ¢ and ba(j). Place a guard at

c. Let Pvzi) be the polygon obtained from Pj

after deleting all the triangles generated by
edges containing two vertices of Py(j) not
vertices of Py(j). Partition Py(j)-Py(j) into m
simple polygons Pj,....Pm each containing
exactly one vertex v(j) that is not a vertex of
Pi, j=1,...m. For j=1,..., m execute 2-Guarding
(Pj, v(j))-

End 2-Guarding

It now follows by Observation 1 that
the collection of guards thus obtained is a 2-
guarding of P, that is each visibility
subpolygon Py(j) calculated during our
execution of 2-Guarding is 2-guarded.
Moreover, our procedure places at most one
guard on each edge of P. In Figure 3 we present
the 2-guarding produced for the polygon in
Figure 2.
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Original Guarding

Modified Guarding

Figure 4

We now show that in the above
procedure, we can save one guard by careful
choice of the initial guard a. To this end, let
vi bea convex vertex of P incident to edges e;j.1
and e;. If we place a on ej.1 close enough to v;
so that a can see all of ej.] then a guard x is
created by the ray generated by a and vj;1 and
a guard y is placed on e;. (See Figure 4.) If we
now move x up until it is above the line
generated by e; until it sees a, then we can
eliminate the guard originally placed on e;.
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(See Figure 4.) This proves that n-1 guards
suffice to 2-guard P.
QED

Theorem 2: L%J guards are always sufficient
and sometimes necessary to 1-guard a simple

polygon.

Proof: In the proof of Theorem 1, color the
initial point a with color 1 and the guards
generated by a with color 2. In the successive
iterations, if a guard was generated by a guard
with color 1 (resp. 2), color it with color 2 (resp.
1). By observation 1, and our coloring rule, it
follows that every point is seen by at least one
point with color 1 and one with color 2.
Choose the color class with fewer vertices to
obtain the sufficiency of our result. The family
of comb polygons similar to the golygon shown
in Figure 1 demonstrates that | 2] guards are

sometimes required. 2
QED

3. Polygons With Holes

Given a simple polygon P', and k
disjoint polygons Q1,...,Qk contained in the
interior of P, we say that the polygon P=P'-
(Qqu...uQx) is a polygon with k holes.

In this section we study the problem of
1- and 2-guarding for polygons with holes. We
start by proving:

Theorem 3: Not every polygon with holes is 2-
guardable.

Proof: To prove Theorem 2, all we have to do is
to exibit a polygon with two holes that is not 2-
guardable. To this end consider the polygon
with two holes shown in Figure 5.

Consider the point set S={a,b,c,d,e.f}. In
order to two-guard the elements of S, we can
choose only guards placed in the interior of
e1,....e11. Moreover, no guard placed in any of
these edges can see two elements of S. Our
result now follows.

QED
Next we prove:

Theorem 4: Every polygon with holes is 1-
guardable.

Figure 5

Before we proceed with the proof of
Theorem 3 we recall the following result on
visibility.

Lemma 2: Let S={A1,....An} be a collection of
disjoint line segments and p a point on the
plane such that p is externally visible from S,
i.e. there is a ray starting at p that does not
intersect any element of S. Then S contains at
least one line segment A; that is completely
visible from p.

A proof of this lemma can be obtained from
results presented in [FRU]. It is easy to see that
p induces an order relation "<" in S as
follows:

i) Wesay that A, blocks Ap (denoted by A,
— Ap) if there is a point q in Ap such that the
line segment joining p to q intersects A,.

ii) Wenow say that A; < Ap if A; > Ap or
there is a chain of elements A3 =A1 > Ay ... =

Ak = Ap.

In the language of [FRU] "<" is a light
source order. Thus the element A; claimed in
Lemma 2 is nothing else than a minimal
element of the order relation "<" on S.

Proof of Theorem 4: Let P be a polygon with
holes. Without loss of generality, assume that
no edge of P is parallel to the x-axis, that no
two vertices of P have the same y-coordinate,
and that the difference between the y-



coordinates of any two such vertices is at least
£>0.

For every vertex v of P consider the
longest line segment contained in P which is
parallel to the x-axis and contains v. These
lines partition P into a collection of convex
polygons T={Rj,....Rm} with disjoint interiors.
For every edge e of P pl%ce a guard in its
interior at distance at most 5 from its lower
end point.

Figure 6

We claim that these points 1-guard P. In order
to prove our claim we observe that if the
boundary of a region Rj of T intersects the
interior of an edge e and also contains its lower
end-point, then it contains the guard assigned
to e. Suppose then that an element R;j of T
does not contain a guard in its boundary and
consider a point p in Rj. If p lies in a line
segment contained in P that contains an edge e
of P, then the guard assigned to e guards p.
Suppose then that this is not the case. Using
the horizontal line through p, cut the polygon
P in two parts and delete that part of P above
it. (See Figure 6.) At all the remaining vertices
of P, cut away a sufficiently small segment
from each edge of P, or the remaining segment
of an edge of P. (See Figure 6).

Notice that we get a disjoint family of
line segments for which p is externally visible.
By Lemma 2, one of these segments, say e/, is
completely visible from p. Since p is in the
interior of P, it follows that p sees the side of
e' facing towards the interior of P, and thus
the guard assigned to the edge of P that
contains e' guards p.

4, Conclusions

In this paper we studied the problem of
guarding a polygon P by using at most one guard
in the interior of each edge of P. We proved

| that any polygon can be 2-guarded using at most
| n-1 guards. We also E

}'lglved that any polygon
can be 1-guarded with -Z—J . We proved that
not all polygons with holes are 2-guardable
and that they are always 1l-guardable. An

open problem here is that of deciding if a

. polygon with holes is 2-guardable. As for 1-

and 2-guarding of simple polygons, it is easy to
see that it is possible to develop linear time
algorithms to find 1- and 2-guardings of

: n-
polygons using n-1 guards and L—Z“J guards
respectively. Details of this will be given in
the full version of this paper.
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