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Abstract

We consider the problem of locating a ray emanating
from the origin of 3-space such as to maximize the min-
imum weighted Euclidean distance to a set of weighted
obstacles (points, lines or line segments). We present
algorithms based on the parametric search paradigm
which run in O(nlog* n) time in the case of point ob-
stacles, and in O(n?log? n) (O(n?log? n 2°(™))) time in
the case of line (segment) obstacles. We also show that
for practically interesting restricted settings of the line
obstacle problem, subquadratic algorithms can be ob-
tained. Furthermore we discuss some related problems.

1 Introduction

Facility location problems, such as the well known
largest empty circle problem, are one of the major top-
ics in geometric optimization. They are mostly moti-
vated by layout problems in operations research and
are thus generally formulated in a planar setting. In
this abstract we discuss several location problems in 3-
space which arise from an entirely different area: neuro-
surgery. In stereotactical operations, a surgeon removes
a tissue sample from a specified point in the patient’s
brain for diagnostic purposes by intruding a line-shaped
instrument. In order to minimize the risk of brain dam-
age, the objective is to choose a position of the instru-
ment which maximizes the clearance to critical brain
areas such as the visual cortex or blood vessels.

This task is adequately represented by computing a ray
emanating from the origin of 3-space (an anchored ray)
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which maximizes the minimal (weighted) Euclidean dis-
tance to a set of (weighted) obstacles representing the
critical areas. In the following, let d denote the Eu-

clidean distance and ||.|| denote the Euclidean norm.
We formally state the
Problem Definition: Given a set O = {o1,...,0,} of

obstacles (points, lines, resp. line segments) in 3-space
with positive real weights w;, determine an anchored ray
R which maximizes min;<i<n w;d(o;, R).

We will refer to problem version A,B or C when dealing
with point, line, resp. line segment obstacles.

1.1 Outline of the technique

The algorithms described in this abstract are based on
the parametric search paradigm, an ingenious optimiza-
tion technique which was introduced in [13] and has
found numerous applications since (cf. e.g. [3]). The
basic step in employing parametric search is to give effi-
cient sequential and parallel algorithms for the decision
version of the optimization problem. In our case the
corresponding decision problem reads “Given a fixed p,
does there exist a ray R which keeps minimal safety dis-
tance p to all obstacles?”. This decision problem can be
transformed into the question whether a set of ’forbid-
den regions’ covers a two-dimensional manifold which
represents all possible orientations of an anchored ray.
By explicitly computing the union of the forbidden re-
gions, this can be decided efficiently provided that the
union size is small.

1.2 Previous results

Problem A and its planar counterpart were introduced
in (7] and further studied in [8]. The planar version
can be solved in optimal time O(nlogn), whereas the
best previous algorithm for the three-dimenional case



runs in O(nlog® n) time (cf. [8]). The extension to line
(segment) obstacles is investigated for the first time in
this abstract.

1.3 Overview

The abstract is organized as follows: In section 2 we
discuss problem A and present an algorithm which com-
putes a maxmin anchored ray amidst point obstacles in
time O(nlog®n). Furthermore we prove similar time
bounds for some related problems: the dual minmax
anchored ray problem and the maxmin anchored line
problem. In section 3 we consider line (segment) obsta-
cles and give close to quadratic algorithms for problems
B and C. Finally we show that a subquadratic algorithm
can be obtained if problem B is modified to meet a cer-
tain ’width’ criterion.

2 Point Obstacles

2.1 The parametric search technique

Parametric search is an optimization technique which is
amenable when we deal with a monotone decision prob-
lem P(p) depending on a single real parameter p. Mono-
tone means that P(p) is true for all p less or equal to
a threshold value p* and false for all p > p°*. Para-
metric search determines p* by performing an implicit
binary search on some critical values of p with the help
of a sequential and parallel version of a decision pro-
cedure which answers queries like “Given a fixed p, is
p larger, smaller or equal to p*?”. Let T, denote the
running time of the sequential decision algorithm, and
T,, resp. , P the time and number of processors of the
parallel version, then p* can be computed in sequential
time O(PTp + T, T, log P). For a detailed description of
parametric search, the reader is referred to [3].

2.2 Problem A

First we note that problem A is invariant with regard
to transforming the point obstacle set P = {pi =
(z.-,y.-,z,-)};s,-s,. with weights w; > 0 to P = {p: =
(wizi, wiyi, wizi)}1<i<n With unit weights. In the fol-
lowing we will therefore assume w.l.o.g. that all weights
are equal to 1. Consider the following decision prob-
lem P(p): Given a positive real p, is there an anchored
ray R with minj<i<n d(pi, R) 2 p? P(p) is monotone

and solving problem A amounts to computing the max-
imal p* for which P(p) is true, and an anchored ray
R* satisfying mini<i<n d(pi, R*) = p*. Let dnin denote
min;j<i<n d(pi,0). Clearly P(p) is false for all p > dmin
and consequently p* < dmin. In order to apply the para-
metric search paradigm, we have to give sequential and
parallel algorithms to decide P(p) for 0 < p < dmin- An
anchored ray Rx = {ax;a € Ry} can be represented
by its intersection x/||x|| with the unit sphere S2. The
points on S? representing rays too close to p; € P form
an open spherical disc F/ = {x € 8?;d(Rx,pi) < p}
which we name a forbidden region. P(p) is equivalent
to deciding whether the union of the forbidden regions
U; F} covers the unit sphere S?. Let PI denote the
plane satisfying PIf N S? = OF! and H{ denote the
closed halfspace bounded by PIf and containing the ori-
gin. The intersection Poly = N;H! of these halfspaces
is a possibly unbounded convex polyhedron. P(p) is
false iff Poly is bounded and all vertices v of Poly lie in
the interior of 82, i.e., they satisfy ||v|]| < 1. As Poly
contains the origin in its interior, its construction can
be reduced to a 3D convex hull problem by a standard
dual transformation. The convex hull of n points in 3-
space can be constructed in O(nlogn) sequential and
O(log2 n) parallel time using n processors on a CREW
PRAM (cf. [14),[1]). Plugging this into the parametric
search paradigm, we obtain

Theorem 1 Given a set P = {p1,...,pn} of poinis in
3-space with positive real weights w;, an anchored ray
mazimizing the minimum weighted Euclidean distance
to P can be computed in time O(n log* n).

2.3 Related problems
2.3.1 Computing a maxmin anchored line

A straightforward modification is to replace the an-
chored ray in problem A by a line passing through the
origin, an anchored line. In the case of unit weights, the
resulting problem is equivalent to computing a largest
empty cylinder with an anchored axis. It can be tackled
using basically the same approach as in the preceding
paragraph. An anchored line is represented by its two
points of intersection with S2. The forbidden region Ff
induced by a single obstacle point is the union of two
open diametrically opposed spherical discs and the deci-
sion problem whether the union of all forbidden regions



covers the sphere can again be reduced to a halfspace
intersection problem. This observation leads to

Theorem 2 Given a set P = {p;,...,pn} of points in
3-space with positive real weights w;, an anchored line
marimizing the minimum weighted Euclidean distance
to P can be computed in time O(nlog® n).

2.3.2 The dual minmax problem

The dual version of problem A asks for an anchored ray
which minimizes the maximal weighted Euclidean dis-
tance to a set P of weighted points in 3-space. Given
a positive real p, every point p; € P induces an ad-
missible region A? = {x € 8%;d(pi, Rx) < p}, which
is an open spherical disc. The corresponding decision
problem asks, whether the intersection of the admissi-
ble regions Int = N; A? is empty. Int is a convex spher-
ical region and can be computed by divide & conquer.
We assume that for each of the two subregions to be
intersected in a conquer step, two lists of its bound-
ary vertices sorted along the upper resp. lower chain are
given. The essential part of the conquer step is to merge
these lists efficiently. This can be done in linear sequen-
tial time and in O(loglogn) parallel time using TSEF&E?
processors of a CREW PRAM [10]. Omitting further
details, we state

Theorem 3 Given a set P = {p1,...,pn} of points in
3-space with positive real weighls w;, an anchored ray
minimizing the mazimum weighted Euclidean distance
to P can be computed in O(nlog® nloglogn) time.

3 Line (Segment) Obstacles
3.1 Problems B and C

We first deal with problem B, the maxmin ray amidst a
set of line obstacles L = {l1,...,ln}. As in the preced-
ing section, we can eliminate weights by a straightfor-
ward transformation. It is convenient to parameterize
an anchored ray Rx by its point of intersection x with
the planes P : z = 1 resp. P : z = —1. (We omit the
treatment of horizontal rays for simplicity in this ab-
stract.) We seek the minimum p* such that the union
of all forbidden regions F¥ = {x € P;d(Rx,l) < p}
and Ff = {x € P;d(Rx, ;) < p} cover both planes P
and P. Each F? has the shape of an open wedge; it
can degenerate into an open halfplane, an open stripe

or it may be empty. Following the parametric search
paradigm, we show how to solve the decision problem
“Given a fixed p, do the F—,-p cover P?” with sequen-
tial and parallel algorithms. (P is treated analogously).
First we construct the arrangement induced by the lines
containing the bounding rays of all forbidden regions.
This can be done in time O(n?) by the standard incre-
mental algorithm. Then we decide by traversing every
feature (face, edge, vertex) of the arrangement, whether
there is a feature not covered by any forbidden region.
This can be accomplished within the same time bounds.
In order to parallelize the algorithm we adapt a tech-
nique of [2]. The a:rangement can be constructed by n?
processors in O(log n) parallel time on a CRCW PRAM.
This is done by computing all vertices of the arrange-
ment, sorting the edges incident to a vertex around this
vertex and sorting the vertices incident to an edge along
this edge. For every feature of the arrangement we need
to compute the number of forbidden regions it is cov-
ered by. For any pair of adjacent faces, this quantity
differs at most by one. We construct the dual graph
of the arrangement, build a spanning tree of the dual
graph and convert it into an Eulerian path. We can
then calculate the respective quantities for each face of
the arrangement by a parallel prefix algorithm, all in
O(logn) parallel time using n? processors. The same
can be done for the edges and vertices of the arrange-
ment. Applying the parametric search technique yields
the following

Theorem 4 Given a set L = {l;,...,lp} of lines in
3-space with positive real weights w;, an anchored ray
mazimizing the minimum weighted Euclidean distance
to L can be computed in time O(n? log?® n).

In the remainder of this section we will briefly discuss
how to solve problem C, the case of line segment ob-
stacles S = {s1,...,5,}. The forbidden region F! in-
duced by a line segment s; € S in the plane P (resp.
P) is a convex planar region bounded by at most two
line segments and two arcs of conic sections or may
be empty. The arrangement of all boundaries in both
planes can be constructed by the incremental algorithm
of [5] in O(n22%(")) sequential time. (a(n) denotes the
extremely slowly growing functional inverse of Acker-
mann’s function.) By proceeding in much the same way
as above, we get

Theorem 5 Given a set S = {s1,...,sn} of line
segments in 3-space with positive real weights w;,



an anchored ray mazimizing the minimum weighied
Euclidean distance to S can be computed in time
O(n? log? n 2°(™).

Note that the algorithms can easily be modified to com-
pute a maxmin anchored line amidst line (segment) ob-
stacles.

3.2 Subgquadratic algorithms for restricted

problem B
3.2.1 Restricted problem setting

There is evidence that problem B generally cannot be
solved in subquadratic time. In fact, the corresponding
decision problem is closely related to the class of n2-hard
problems as introduced in [9], and it seems improbable
that subquadratic algorithms for problems of this class
exist.

The difficulty of problem B is mainly caused by the fact
that the complement of the union of all forbidden regions
(wedges) may have quadratic complexity. Recent results
indicate that the union size of a collection of geometric
figures such as triangles, wedges and polygons is close
to linear provided that they are fat, i.e., do not contain
long, skinny parts 12, 6, 11]. We give restrictions on the
problem setting that guarantee the forbidden regions to
be fat.

e We are only interested in anchored rays keeping a
fixed minimal safety distance po to all obstacles.

e The minimal distance of a line obstacle from the
origin is bounded from above by do.

Both restrictions can be justified in view of the intended
application of the algorithm. An instance of the re-
stricted problem B, which we will call problem B, is
characterized by its width w = po/do. An algorithm for
problem B’ with width w = po/do and line obstacles
L ={l1,...,1a} is expected to return an anchored ray
maximizing the minimal distance to L if it is > po, or
to indicate that no such ray exists.

3.2.2 The subquadratic algorithm

Let us first address the decision problem. We cannot ap-
ply the bounds for the union size of fat wedges stated in
[6], because the opening angles of the forbidden wedges
may be arbitrary small, even in the restricted problem
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setting. By choosing a different representation of the
rays, we can nevertheless show that the forbidden re-
gions of problem B’ have small union size. An anchored
ray is represented by its intersection with the faces of
the axis-parallel cube C of sidelength 2 whose center is
the origin. Given a fixed p, there is no ray R satisfy- A
ing d(R,1;) > p Vi iff the forbidden regions cover all six
faces of C . Let f be an arbitrary face of the cube and
Pl be the plane containing it. The forbidden regions
F = {F!}1<i<n of f are a collection of convex, polygo-
nally bounded regions; each F can be described as the
intersection of an open wedge W/ in Pl with f (cf. 3.1).
We shall show how to extend each F! to a fat polygon
whose interior coincides with F inside in#(f), the inte-
rior of face f. For a formal definition of fatness we use
the notion of 6-wideness as introduced in [11].

Definition 1 For any 0 < § < 1, a é-corridor is an
isosceles trapezoid T with vertices py, p2, p3, pa such that
lpipal = |p2ps| = max{|pip2|, [pspal}/6. For any 0 <
§ < 1, a simple polygon is §-wide, if for any two edges
e,e' of P, and any four poinis py,ps € € and p3,p3 € €'
that are the vertices of a y-corridor Q such that int(Q) C
inil(P), it follows that v > 6.

It is easy to see that a triangle with minimal angle a is
2sin($§)-wide.

Lemma 1 Consider an instance of problem B’ with
width w = po/do and line obstacles L = {ly,...,1n}. Let
F = {Ff}i<i<n be the collection of forbidden regions of
a face f of the cube C, i.e. Ff = {x € f;d(Rx,li) < p}.
Then there ezists a collection F' of n §-wide polygons
with the property

(Uprerint(F')) N ind(f) = Ui Ff N ind(f)

and § > min{2sin(§),\/ﬁ”-g, \/ﬁi—;}.

Proof: (Sketch)

We explicitly show how to construct the element of 7’
whose interior covers Ff € F inside int(f). Let C; de-
note the circumcircle of square f in P!, and C2 the con-
centrical circle of radius 2. We distinguish three cases
according to the position of the forbidden wedge W/
(whose intersection with f is F?) in the plane Pl.

Case 1: Only one or none of the bounding rays of w?
intersects C;. We construct an arbitrary equilateral tri-
angle T containing the intersection of W/ and C, (Fig-
ure 1). This triangle is 6-wide for 6 = 1.



Case 2: Both bounding rays intersect C; and the apex
a of Wf is contained in C;. The wedge W/ inter-
sects one of the two tangents to C; perpendicular to
its medial axis in points p; and p; such that the tri-
angle ap;p, coincides with W/ inside C;. We erect an
isosceles right-angled triangle on p1p7, unite it with tri-
angle ap;p» and denote the resulting kite by K (Figure
2). Analytic calculations prove that K is é-wide for

§ > min {2sin(7r/8),\/3-f—';’—;-,}.
Case 3: Both bounding rays intersect C; and the apex
of W,-" is not contained in Cy. The wedge W/ intersects
the two tangents to C) perpendicular to its medial axis
in four points p;, p2, p3, p4 Which are the vertices of an
isosceles trapezoid T (Figure 3). It can be shown that
T is 6-wide for § > min {2sin(7r/8), W/ #,}

m]

A close to linear bound for the union complexity of
the forbidden regions now follows directly from recent
bounds for é-wide polygons. (For a simpler statement
of the results we will assume 1/n < §,w < 1 in the
following.)

Theorem 6 ([11]) Let P be a set of é-wide polygons
with n vertices in total. The mazimum complerily of
the contour of the union for P is O((nloglogn)/é).

We compute the boundary of the union of all forbid-
den regions of face f following the divide & conquer
paradigm. The conquer step can be performed by an
optimal line segment intersection algorithm, e.g. [4], in
time O(Nlog N + k), where N denotes the complex-
ity of the two superimposed polygonal regions which
is O(nloglogn/w) and k denotes the number of in-
tersections found which also is O(nloglogn/w). Thus
the merging can be done in time O(nlognloglogn/w).
The overall running time of the sequential algorithm is
O(nlog? nloglogn/w). A parallel version of the algo-
rithm uses the red-blue line intersection algorithm of
[16], which computes all points of intersection in opti-
mal parallel time O(log N) using N+k/ log N processors
of a CREW PRAM.

Now we can formulate the overall algorithm. First the
algorithm runs the decision procedure with p = po. If
the result is 'No’, the algorithm indicates failure. Other-
wise it runs the usual parametric search algorithm and
exits with the resulting ray.
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Theorem 7 Given an instance of problem B’ with line
obstacles L = {ly,...,1,} and width w = po/dy, there is
an algorithm which computes an anchored ray mazimiz-
ing the minimum Euclidean distance to L if this min-
itmum distance is > po or indicates that no such ray
ezists, all in time O(nlog® nloglogn/w).
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