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Abstract

Let P = {P,,P,,...,Pp,} be a set of m convex poly-
gons in the plane with a total number of n vertices,
and for 1 < i < m, let w; € Rt be a weight associated
with P;. The weighted distance between a line £ and a
polygon P, is given by d(¢, ;) = minpep, et d(p, g)-wi,
where d(p, q) is the Euclidean distance between p and
g. We want to compute a line £ that minimizes the
maximium distance between £ and the polygons of P.
We present an O(na(n) log® n) algorithm to compute
such a line. We also give an O(n?**) time algorithm,
where ¢ is an arbitrarily small positive constant, to
" solve the three dimensional version of this problem;
here, P is a set of convex polytopes in R®, and we
want to compute a plane h that minimizes the maxi-
mum weighted distance between h and the polytopes.

1 Introduction

Problem Statement. Let P = {P;, P,,..., P} be
a set of m convex polygons in the plane with a total
number of n vertices, and for 1 < i < m, let w; € R™
be a weight associated with P;. The distance be-
tween a line £ and a convex polygon P;, denoted by
d(P;,£), is defined to be minyep, 4c¢ d(p, g).wi, where
d(p, q) is the Euclidean distance between p and g. We
want to compute a line £ that minimizes the maxim-
ium distance between £ and the polygons of P. We
refer to this problem as the weighted linear approzi-
mation of convex polygons (or linear approximation
for brevity). If all weights are the same, say, 1, we
refer to the problem as the unweighted linear approx-
imation problem. We also study the same problem
in 3-space too. Given a set P of m convex polytopes
with a total of n vertices and a set of weights, we
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want to compute a plane h such that the maximum
weighted distance between h and P is minimized.

Previous Results. The problem of approximating
sets of points in the plane is encountered in fields
such as statistical analysis, computer vision, pattern
recognition, and computer graphics, and is usually
referred to as the linear approzimation or the linear
regression problem. The problem consists of find-
ing the “best” line approximating a set of points.
There are many possibilities for the optimality cri-
terion used. A good survey of algorithms that use a
variety of criteria can be found in [17, 18]. For ex-
ample, we may want to find a line minimizing the
maximum orthogonal distance to the points or min-
imizing the sum these distances. Algorithms solving
problems with these or other optimality criteria are
discussed in [7, 13, 15, 16, 27). In some cases, the
data points to be approximated are not defined pre-
cisely, but are themselves approximated by simple ob-
jects such as polygons or circles. Naturally, in such
cases, we may still want to find the “best” approxi-
mating line. In [24], O’Rourke examined the problem
of finding a line consistent with a set of data ranges,
i.e., a line intersecting a set of vertical line segments.
Morris and Norback [22] gave some characterizations
of both the unweighted and weighted versions of the
linear approximation of points. Following their basic

. ideas, Lee and Wu [19] gave an optimal ©(nlogn)

time algorithm for the unweighted version, and an
O(n?logn) algorithm for the weighted version, which
was improved by Houle et al. [15] to O(nlogn) (in
fact, their algorithm works in higher dimensions as
well).

In this paper we consider a generalization of the
above problem where we want to approximate a set
of convex polygons by a line. Robert and Toussaint
[23] gave an O(nlogn) time algorithm for the un-
weighted version, and an O(n?logn) time algorithm
for the weighted version. In this paper, we present
an O(nlog®n) time algorithm for the weighted ver-
sion of this problem, thereby improving the previous
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known bounds by roughly an order of magnitude. We
also give an O(n?*¢) time algorithm for the three di-
mensional version of the problem, which, as far as we
know, is the first nontrivial algorithm.

A problem closely related to the linear approxima-
tion of convex polygons is to compute a line transver-
sal of a set of objects in the plane if there exists one;
given a set of objects S, a line transversal of S is a
line that intersects all objects of S. Atallah and Ba-
jaj [4] gave an O(nlogn) algorithm for computing a
transversal of a set of circles, and Edelsbrunner et al.
[9] gave an O(nlogn) time algorithm to compute a
description of all line transversals of a set of line seg-
ments. Interested readers are referred to 10, 26] for
a survey of known results about transversals.
Parametric Search. Our algorithm is based on
Megiddo’s parametric search technique [21], which
has been successfully used to solve a wide variety of
geometric problems [1, 2, 5]. The basic idea behind
the parametric search technique is as follows: Sup-
pose we have a problem P(r) that receives as input n
data items and a real parameter r. We want to find
a value r* of r at which the output of P(r) satisfies
certain properties. Suppose we have an efficient se-
quential algorithm A, for solving P(r) at any given
r, and that, as a by-product, the algorithm A4, can
also determine whether the given r is equal to, less
than, or greater than the desired value r*. Assume,
moreover, that the flow of execution of A, depends
on comparisons, each of which involves testing the
sign of a low-degree polynomial in  and in the input
items. ,

Megiddo’s technique then runs the algorithm A,
“generically,” without specifying the value of r, with
the intention of simulating its execution at the un-
known r*. Each time a comparison is to be made,
the few roots of the associated polynomial (treated
as a polynomial in r only) are computed, and we run
A, “off-line” at each of them, thereby determining
the location of r* among these roots, and thus the
sign of the polynomial at r*, i.e., the outcome of the
comparison at r*. If one of the roots is r*, we stop
right away, because we have found the value of r*,
otherwise the execution of the generic A, is resumed.
As we proceed through the execution, each compari-
son we resolve further constrains the range in which
r* can lie, and we thus obtain a sequence of progres-
sively smaller intervals, each known to contain r. It
can be shown that the generic algorithm has to make
a comparison whose polynomial vanishes at * (see
[2] for a proof), which will cause the computation to
stop at the desired value r*.

The above procedure works even if, for a given r,
A, can only determine whether r is less than r* or at
least r* (i.e., cannot distinguish between r > r* and

r = r*); this is the case in our application. In this
case, the interval containing r* is half-closed, of the
form (a, A); since the algorithm performs a test at r~,
it follows that the upper endpoint of the final interval
must be r*.

The cost of this implicit search is usually dom-
inated by C,T,, where C; is the maximum number
of comparisons executed by A,. Since this bound
is usually too high, Megiddo suggests replacing the
generic A, by a parallel algorithm, Ap. If A, uses
TI processors and runs in T, parallel steps, then each
such step involves at most II independent compar-
isons, that is, each can be carried out without having
to know the outcome of the others. We can then com-
pute the roots of all II polynomials associated with
these comparisons, and run a binary search to find
the location of r* among them (using, say, the se-
rial algorithm A, at each binary step). This requires
O(Il + T,logIl) time per parallel step, for a total
of O(TIT, + T,Tp log IT) time, which often results in a
saving of nearly an order of magnitude in the running
time. Since the parallel algorithm is simulated se-
quentially, we can use the parallel computation model
of Valiant [28].

In our case, r* is the smallest value of r for which
there exists a line £ such that d(P,£) < r, and the
decision problem is to determine, given a set P of
m convex polygons in the plane with a total of n
vertices, the associated set of weights W and a real
number r > 0, if there is a line £ such that d(P,£) <r
(We let d(P,£) denote max; d(F;,£)).

In order to apply Megiddo’s technique, we need
efficient sequential and parallel algorithms for the de-
cision problem.

2 Geometric Preliminaries

Lower envelopes. Let F = {f1,...,fa} be a col-
lection of n d-variate, possibly partially defined, func-
tions, all algebraic of some constant maximum degree
b (and if they are partially defined, the domain of
definition of each f; is also described by a constant
number of polynomial equalities and inequalities of
maximum degree, say, b, too). The lower envelope of
F is defined to be

LF(x) = min f;(x)

where the minimum is taken over all functions of F
that are defined at x. Similarly, one can define the
upper envelope of F as

Ur(x) = max fi(x).

The minimization diagram Mz of F is the decompo-
sition of R? into maximal connected relatively open
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cells, of any dimension, so that within each cell the
same subset of functions appear on the envelope L.
If the functions of F are partially defined, we also
require that, over each cell ¢, each of the polynomi-
als defining the domain of definition of any function
that attains £ over c¢ has a fixed sign. Informally,
this means that if a function f attains L over a cell
¢, then either c¢ is fully contained in the boundary
of the domain of f or is disjoint from that boundary.
The combinatorial complezity of Mz and of L is the
number of cells of all dimensions in M. The maz-
imization diagram M’z and its combinatorial com-
plexity are defined in an analogous manner.

For d = 1, by the theory of Davenport-Schinzel
sequences, the complexity of L ( or Ur) is Ap42(n),
where A\¢(n) is the maximum length of a Davenport-
Schinzel sequence of order ¢, composed of n symbols;
see [26) for details on Davenport-Schinzel sequences.
It is well known that for a fixed ¢, A¢(n) is close to
linear. The minimization diagarm Mg, and thus the
lower envelope, can be represented as the sequence
of its vertices sorted from left to right. For d > 1,
the result of Sharir [25] implies that the complexity
of Mz is O(n4*¢), for any € > 0. For d = 2, MF
can be computed in O(n?*¢) time, for any € > 0 [3].

Transversals. Let S= {5;,S,,...,S,} be a collec-
tion of n compact convex sets in the plane. A line
that intersects all sets of S is called a transversal (or
a stabber) of S. It is convenient to study transversals
by applying a standard form of geometric duality, in
which the dual of a point (a,b) is the line y =az +b
and the dual of a line y = az + 8 is the point (—¢, §)
(see [8]). We will denote the dual of an object v by
~*. Note that this duality is undefined on vertical
lines; thus our analysis will handle only non-vertical
transversals. For a compact convex set R, we define
its stabbing region R* to be the set of points dual to
the lines that intersect R. The boundary dR* of R*
is the set of points dual to the tangents to R. It is
easily checked that R* is bounded from above by a
convex z-monotone curve and from below by a con-
cave z-monotone curve; they will be referred to as
the upper and lower arms of R*, respectively. The
upper and lower arms can be defined as graphs of
totally defined univariate functions. The dual of a
point I* lying on the upper (resp. lower) boundary of
R* is a tangent ! to R such that R lies in the closed
half-plane lying below (resp. above) I. The stabbing
region (or the space of all transversals) of S is the in-
tersection $*= (.-, S;. By definition, the lines dual
to any point in S* are precisely all the non-vertical
transversals of S. The definition of stabbing regions
for a convex set in R®, and for a family of convex
sets in R®, can be extended in an obvious manner.

We refer the reader to [26] for more details about
transversals.

3 Linear Approximation of Con-
vex Polygons in 2-d

Let P = {P,,P,,..., Py} be a set of m convex poly-
gons in the plane with a total of n vertices, W the
associated set of weights, and r a non-negative real
number. The decision problem for the linear approx-
imation of P is to determine whether there is a line ¢
such that d(P,£) < r.

Let D(a,b) denote the disk of radius b centered at
a. Let D; denote the Minkowski sum P;+ D(0,r/w;).
D; is a convex region, whose boundary is the outer
boundary of the region swept by a disk of radius 7 /w;
as its center moves around the boundary of the convex
polygon P;. Then the decision problem is equivalent
to the following problem: Is there a line £ that stabs
D= {D; |1 <i < n}. Let T; (respectively B;) de-
note the upper (respectively lower) arm of D}, the
stabbing region of D;. Welet T = {T; |1 < i < m}
and B = {B; |1 <i <m}. T; is a continuous piece-
wise hyperbolic function, and if n; is the number of
vertices in polygon P;, T; is constituted of at most n;
pieces. Let H; denote the collection of hyperbolic arcs
constituting T, and let H = |J; H;. Note that # has
at most n elements, and the lower envelope L7 is the
same as the lower envelope L4 of the hyperbolic arcs.
The combinatorial complexity of the lower envelope
L7 depends on the maximum number of intersections
between two arcs of 7. An intersection between two
arcs H; and H; in the dual plane corresponds to an
upper tangent common to two disks in the primal
plane. Since two non-identical disks have at most
two common upper tangents, we conclude that curves
H; and Hj; intersect at most twice. Therefore the
combinatorial complexity of L1 (or L) is at most
A(n) = O(n2%(™) [26]. Using a similar argument,
we can conclude that the combinatorial complexity
of Up is O(n22™).

3.1 Sequential algorithm for the deci-
sion problem

We first check whether D has a vertical line transver-
sal. Let I; denote the projection of the convex region
D; onto the z-axis. D has a vertical line transver-
sal if and only if (-, I; # 0. Since (;_, I; can be
computed in O(n) time, we can determine in O(n)
time whether D has a vertical line transversal. If
the answer is ‘no’, we next check whether D has a
non-vertical line transversal, which, by the above dis-
cussion is equivalent to checking whether D* # 0. We
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observe that the stabbing region D* =, D} of D is
precisely the set of points that lie above the upper
envelope Up and below the lower envelope L.

We construct L7 (actually £4,) and Up using the
efficient algorithm of Hershberger in O(na(n) logn)
time. We determine whether there is any point above
Up and below L7 as follows: We merge the vertices of
the minimization diagram M7 and of the maximiza-
tion diagram M. Let by,ba,...,b; be the merged
list of vertices. The bounds on the combinatorial
complexity of Up and L7 imply that k = O(n22(™).
Let f € B and f' € T denote the functions that
appear in Up and L1 respectively, in the interval
(bi,biy1). Arguing as earlier, we can conclude that
f and f' intersect in at most two points. Therefore,
we can determine in constant time whether there is
any point with abcissa in the interval (b;,b;i+1) that
lies above the graph of f and below the graph of f'.
We walk through all the b;’s in O(k) = O(n2*™)
time. This completes the discussion of our sequential
algorithm for the decision problem.

Theorem 3.1 Given a set P of m convez polygons
in the plane with a total of n vertices, the associated
set of positive real weights W and a real number r >
0, we can determine in O(na(n)logn) time whether
there is a line £ such that d(P,£) < r. The algorithm
can be modified to return one such line if it exists.

3.2 A Parallel Algorithm for the De-
cision Problem

Our parallel algorithm for the decision problem runs
along the same lines as its sequential counterpart. We
first compute (j_, ; in O(logn) time using O(n)
processors. If the intersection is empty, we construct
L7 and Up, and determine if there is any point that
lies above U and below Lr. To construct the en-

velopes in parallel, we employ the algorithm by Goodrich

[11].

Theorem 3.2 (Goodrich) Given F = {fi, f2,..., fn}
be a collection of functions, where f; :R = R,1 <1 <
n, such that every pair of functions has at most k in-
tersections, one can construct the upper envelope of
the functions in F in O(logn) time using O(Ax(n))
processors in Valiant’s parallel comparison model.

The theorem implies an algorithm for construct-

ing Up and L7 in O(log n) time using Ay (n) = O(n2*™)

processors. To check whether there is a point that
lies above U and below L7, we merge the lists of
vertices of M7 and M); (each list has O(n2°(™) ele-
ments) as follows. We compute the rank of an element
a in each list by binary searching each list with a in
O(logn) time. The ranks of all the elements are found

in O(logn) time in parallel by O(n2%(™)) processors.
Once the ranks are computed, the merged list can be
computed easily. Let by, bz, ..., bx be the merged list
of breakpoints. Let f € B and f' € T denote the
functions that appear in Up and L7 respectively, in
the interval (b;, bi+1). We can determine in constant
time whether there is any point with abcissa in the
interval (b;, bi+1) above the graph of f and below the
graph of f'. We do this in parallel (using O(n2*(™)
processors) for all intervals determined by the break-
points. We conclude the discussion of the parallel
algorithm.

Theorem 3.3 Given a set P of m convez polygons
in the plane with a total of m wvertices, the associ-
ated set of positive real weights W, and a real number
r > 0, one can determine if there is a line £ such that
d(P,£) < r in O(logn) time using O(n2*(™) proces-
sors.

Applying Megiddo’s parametric search technique
as discussed in Section 1 with the algorithms of Theo-
rems 3.1 and 3.3 immediately implies an O(na(n) log® n)
time algorithm to compute r*, the smallest value of
r for which there is a line £ such that d(P,£) < r. We
then compute a line £ that attains d(P,€) = r* by
modifying the sequential algorithm of Theorem 3.1.

Theorem 3.4 Given a set P of m convex polygons
in the plane with a total of n vertices and the asso-
ciated set of positive real weights, one can compule,
in O(na(n)log® n) time, a line £ that minimizes the
mazimum distance to the polygons of P.

4 Linear Approximation of Con-
vex Polytopes in 3-d

In this section, we present an algorithm for the lin-
ear approximation of convex polytopes in R3. Given
aset P = {P,...,Pn} of m convex polytopes in
R3, with a total of n vertices, and an associated set
W = {ws,...,wn} of positive real weights, we want
to compute a plane h that minimizes d(h, P), the
maximum distance between h and the polytopes of P.
As in the planar version of this problem, we employ
the parametric search technique of Megiddo. The de-
cision problem in this case is: Given a non-negative
real number r, determine whether there is a plane h
such that d(h,P;) <r,for1 <i<m.

Let B(a,d) denote the ball of radius d centred at
a. Let D; denote the Minkowski sum P; + B(0, 7 /w;).
Then the decision problem is equivalent to determin-
ing whether D = {D; | 1 < ¢ < m} has a plane
transversal. Let T; (respectively B;) denote the set
of points dual to upper (respectively lower) tangents
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of D;. T; and B; are ry-monotone surfaces and can
be regarded as the graphs of bivariate, piecewise alge-
braic functions composed of n; pieces, where n; is the
number of vertices of P;. Each piece is a partially de-
fined algebraic function of some constant maximum
degree b, and the domain of definition of each piece is
also bounded by a constant number of algebraic arcs
of maximum degree, say, b, too. D}, the stabbing re-
gion of D;, is the region lying between T; and B;. Let
H; (respectively G;) denote the collection of pieces
constituting T; (respectively B;). Let T = {T; |1 <
iSm},B={B,~|lsism},’){:UiHia.nd
G = |J,; Gi. The stabbing region D* of D is the set of
points lying above the upper envelope Up and below
the lower envelope £7. By a result of Agarwal et al
[3], the combinatorial complexity of D* is O(n%+¢).
Note that the lower envelope L1 (resp. Up) is the
same as the lower envelope £, (resp. Ug), and that
‘H and G are collections of O(n) (partially defined)
surfaces.

Our sequential algorithm for the decision prob-
lem first checks whether D has a vertical plane (a
plane parallel to the z-axis) transversal. Let I; de-
note the projection of D; on to the zy-plane, and let
I= Uj I;. Clearly, D has a vertical plane transver-
sal if and only if I has a line transversal. Using the
sequential algorithm in the last section, we can deter-
mine in O(na(n)logn) time whether D has a vertical
plane transversal. If the answer is ‘no’, we proceed to
determine whether D* is empty.

If the total number of surfaces in G and H is
less than a (suitably chosen) constant, we check in
constant time if there is a point x € R? such that
Ug(x) < Ly(x) (using, say, the algorithm of [3]).
Otherwise, we fix some sufficiently large constant pa-
rameter r, and choose a subset E (resp. F) of arlogr
surfaces from G (resp. H), where a is a constant inde-
pendent of r. We compute the minimization diagram
Mp of F and the maximization diagram M} of E.
By a result of Sharir [25], the complexity of M and
Mp is O(r?*¢). We overlay the two diagrams, and
compute the vertical decomposition of the overlay.
By the result of [3], the resulting planar subdivision
II also has O(r?*¢) faces, each bounded by at most
four edges. Let c be a cell of II. Let f be the unique
function that attains Ug in c; there may be no such
f, in which case we assume that f is —oco everywhere.
Let f' attain LF in c; if no such f' exists, we set f' to
+o00 everywhere. If the sign of (f — f') is not the same
over all points in ¢, we refine ¢ further, into O(1) cells,
so that the sign is invariant over each of the refined
cells. Abusing the notation slightly, let ¢ denote one
of the refined cells. If f'(x) < f(x) for points in c,
we can conclude that L4 (x) < Ug(x) for points in c,
and we can discard ¢. Otherwise, let & be the vertical

cell
¢={(x,2) | x € cand f'(x) < 2 < f(x)}

If the graph of a function of H (resp. G) lies below
(resp. above) ¢, then also L4(x) < Ug(x), and we can
discard ¢, so we assume there is no such function. Let
H. C H (respectively G. C G) denote the functions
whose graphs intersect the cylinder ¢. D* is non-
empty over c if and only if there is a point x € ¢
such that Ug_ (x) < Ly, (x), so we solve the problem
recursively for #. and G, over c.

By the theory of random sampling [6], |H.|, |G| <
n/r. Moreover the sets E and F' can be chosen deter-
ministically in O(n) time [20]. Hence, if T'(n) denotes
the maximum running time, we obtain the following
recurrence.

T(n) < O(r**).T(n/r) + O(n).

This solves to T'(n) = O(n?*9), for any § > €. Hence,
we can determine in O(n?*¢) time, for any ¢ > 0,
whether D has a plane transversal.

The above algorithm can be parallelized using stan-
dard techniques [12]. The parallel algorithm runs in
time O(log® n) and uses O(n?*¢) processors. We omit
further details from this version. Plugging this into
the parametric search paradigm, we obtain:

Theorem 4.1 Given a set of polytopes P with a total
of n vertices, and the associated set of weights W,
we can compute, in O(n?*¢) time for anye > 0, a
plane h that minimizes the mazimum distance to the
polytopes of P.
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