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Abstract

For employing the finite element method for solving
partial differential equations, a preliminary step is to
decompose the given geometric domain into a mesh.
One of the requirements of automatic mesh generation
is that the generated mesh should be homeomorphic
(that is, topologically equivalent) to the given geome-
try. We present sufficient conditions that guarantee
such a homeomorphism.

Our approach is based on the well-studied octree de-
composition [9] of the given domain. The root of the
octree is a cube enclosing the domain. A node of the
octree is either a leaf cube or has eight equal sized cubes
as children. For a leaf cube C and some geometry X,
let Cx = C N X denote the restricted cube of C with
respect to X. The sufficient conditions require that the
restricted cubes of all leaves of the octree with respect
to the domain and with respect to the boundary of the
domain be topological closed balls. We describe how
to construct appropriate edges, triangles and tetrahe-
dra of a mesh so that the mesh is homeomorphic to
the domain. The vertex set of the mesh constructed
by our method is the set of centroids of all non-empty
restricted cubes.

Keywords. Homeomorphism, mesh-generation, octrees,
simplicial complexes, triangulations.

1 Introduction

One approach to solve partial differential equations
numerically is to use the finite element method. As
a preliminary step, this method involves the genera-
tion of discretizations of the geometric domain over
which the partial differential equation is being solved,
see e.g. [13]. The process of discretizing the domain
is called mesh generation. Surveys of mesh genera-
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tion methods can be found in [5, 12]. In this paper,
we study octree based meshes and describe conditions
which guarantee a homeomorphism between the gen-
erated mesh and the given geometric domain in R3.
Below, we introduce some definitions from topology
6, 8].

Basic definitions. A simplez or is the convex hull
of an affinely independent point set T. Its dimension
is k = dimor = card T — 1, where card T denotes the
cardinality of T. or is also referred to as a k-simplez.
For d = 0,1,2,3, a d-simplex is respectively called a
vertez, an edge, a triangle and a tetrahedron. IfU C T,
then oy is called a face of or. A stmplicial complez K
is a finite collection of simplices such that the following
properties hold.

(i) Ifoy € K and V C U, then oy € K.
(i) If oy,0v € K, then oy Nov € K.

The first property says that all faces of oy € K, includ-
ing the empty set, are in K and the second property
says that two simplices in K intersect in a common
face. The vertez set of K is vert K = |, cx T, the
dimension of K is dimK = max,cx dimo, and the
underlying space of K is |K| = J,cx 0. A subcomplez
of K is a simplicial complex £ C K.

A geometric triangulation of a point set S C R? is
a simplicial complex K with vert X C S and |K| =
conv S.! The popular Delaunay triangulation [2, 3, 7]
of a point set is an example of a geometric triangula-
tion. In this paper we shall be interested in a topo-
logical triangulation of a topological space in ®3. A
topological triangulation of a topological space X is a
simplicial complex homeomorphic to X. A bijection
f: X Y is a homeomorphism between X and Y if
f and f~! are continuous. If such an f exists, then X
and Y are homeomorphic or are homeomorphs, writ-

lconv S denotes the convex hull of S.



ten X = Y. A simplicial complex K is homeomorphic
to X if the underlying space of K is homeomorphic to
X.

Background. The meshes that we consider in this
paper are simplicial complexes. Schroeder and Shep-
hard [9] present a method for generating meshes auto-
matically. Though one of the issues addressed by their
paper is topological equivalence between the mesh and
the domain, the paper does not guarantee a topoloical
equivalence. Chew [1] describes a method to con-
struct a triangulation of a surface imbedded in ®3.
Extending the idea in [1], Edelsbrunner and Shah [4]
present sufficient conditions which guarantee topolog-
ical equivalence between a given geometric domain X
and a simplicial complex meshing X. The conditions
are formulated in terms of restricted Voronoi cells,
which are intersections of Voronoi cells [14] and X, see
[4, 10] for details. The simplicial complex obtained by
their method is a subcomplex of the Delaunay trian-
gulation of a carefully chosen point set (vertex set).
It is not clear how to choose this vertex set. In this
paper we extend the ideas in [4] to octree based tri-
angulations. This approach implicitly addresses the
vertex selection issue.

Outline. In section 2 we define octree triangulations
Ox restricted by X. In sections 3 and 4 we present
conditions that guarantee a homeomorphism between
|Ox| and X. We conclude the paper with some re-
marks in section 5.

Remark. The intent of this paper is to present a possi-
bly useful technique for homeomorphic mesh genera-
tion without going into tedious technical details. Some
proofs are either omitted or only sketched briefly.
Complete proofs can be found in [11] along with ex-
tensions to 3-manifolds in R?.

2 Restricted Octree Triangula-
tions

An octree [9] is a geometric division of R? into a finite
tree of 3-cubes®. Each 3-cube is either a leaf of the
tree or an internal node. If a 3-cube is an internal
node of the tree, then it is split into 8 equal volume
children. Two 3-cubes are neighbors if one contains a

2], ater, we will use 2-cube to denote a square, l-cube to
denote an edge and a O-cube to denote a vertex.
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face® of another. An edge e of a 3-cube C is split if
any neighbor C’ of C incident to e is split. A corner of
a 3-cube is one of its 8 vertices. An octree is balanced
if an edge of any unsplit cube contains at most one
corner in its interior. If a k-face, k > 0, of one 3-cube
of a balanced octree is contained in another, then the
two cubes have equal edge length, or the ratio of the
larger edge length to the smalleris 2 : 1. If k = 0,
then the ratio can also possibly be 4 : 1. A balanced
octree is strictly balanced if the 4 : 1 ratio is disal-
lowed. Throughout this paper we shall be concerned
only with strictly balanced octrees. We shall further
assume that the 3-cubes are rectilinear, that is each
facet? of a 3-cube is orthogonal to some unit vector
e,1<1<3.

Let p be the centroid of some 3-cube Cp. For a
given octree 7, let S = S, denote the set consisting of
all centroids p such that C, is a leaf cube of 7. Let
X C R be a topological space of interest. For p € §,
let Cp,x = Cp N X be the cube Cy restricted by X.
For T C S, let

Cr= () Cp
pET

and

Crx=[)Cpx =CrnX.
p€ET

For T C S, define pr to be the maximum subset
T’ of S such that C; = Cr:. Observe that Cr is
a (possibly empty) cube. Define £r so that Cr is a
(4—£r)-cube. Note that 1 < £7 < 4. Before we define
the octree triangulation Ox restricted by X, we need
the following lemma.

LEMMA 2.1 Let 7 be a strictly balanced octree and
let S=S,. Let T C S be such that Cr # 0. Then,

(i) conv pr C U,eu, Cpy and

(i) if (ur), denotes the projection of ur on the
(&r — 1)-flat orthogonal to aff Cr,® then the points in
(ur), are in convex position.

Proor. (i) A facet f of a 3-cube Cp, p € pr, is
free if it is contained in the boundary of U‘p€ ur Cp-
See figure 2.1 for an illustration in 2. Let f, be a

3A face of a 3-cube is any of its vertex, edge or bounding
square.

4A facet of a d-cube is any of its (d — 1)-faces.

5aff Y denotes the affine hull of Y.
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Figure 2.1: Residual 2-cube (square) in R2. (a) An
ensemble of four squares of interest. (b) Free and non-
free facets (edges). (c) The residual cube contains the
convex hull of the centroids of the four squares.

free facet for some p € ur. The closed half-space
of aff f, containing p also contains all points in ur
because T is strictly balanced. The intersection of all
such half-spaces for all free facets is the residual cube
P, a convex polytope contained in Upe wr Cp- Since
ur C P, it follows that conv ur C P C Upeup Cp-

(ii) Let ¢ be any point in (pur),. Without loss of
generality assume that (a) the point h Naff Cr is the
origin, (b) h is identified with R*, k < 3, and (c) ¢
is the point (1,1,...,1) € R*. It can be verified by
enumerating all possible configurations of pr under
the restriction that 7 be strictly balanced that the
halfspace H : (g,z) < (g,9) C h contains (ur), — {q}.
We omit the details.

Assume that the points in S = S, are indexed so
that if p € S has an index smaller that ¢ € S, then the
volume of C, is no greater than that of C;. Now we
are ready to construct Ox = Os,x. For every subset
T C S such that Cr x # 0, we construct a simplicial
complex O(T') by induction on 1. For £y = 1, define
O(T) = {or}. For £y = 2, define O(T) = {o7}UT.
For £y = 3, cardur = 3 or card ur = 4. If card ur =
3, define O(T') to be the simplicial complex consisting
of the triangle formed by the three points along with
its edges and vertices. Otherwise, let ur = {a, b, c,d}
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such that £(c} = £ib,c} = €(b,a) = ${da) = 2. Let a
be the point with the smallest index among the points
in pr. Define

U o@).

T'Cur bpi=2

O(T) = {a{a,b,c}r a{a,b,d}} U

By Lemma 2.1(ii), the points in the projection of
T into a plane orthogonal to aff Cr are in con-
vex position and so it follows that O(T) must be
a simplicial complex. Now let £ = 4. Let p
be the point in ur with the smallest index. Let
Ar = Upicupty,=3 O(T'). Define O(T) = Ar U
{conv (o U{p}) | ¢ € Ar does not contain p}. It is
shown in [11] that O(T) is a simplicial complex. Fi-
nally define

Ox =0sx = U o(T).
Cr x#9

Lemma 2.1(i) guarantees that Ox is a simplicial com-
plex. Ox is the octree simplicial complex of S re-
stricted by X. Note that Ox is uniquely defined for S
once we assume a specific indexing of its points.

Intuitively, we construct O(T) by inductively ob-
taining its triangulated “boundary” and then trian-
gulating the “interior”. For example, if {r = 4 and
card ur = 8, then a possible collection of points
for pr is {(1,1,1),(2,-2,2),(-2,-2,2),(-2,2,2)}U
{(1,1,-1), (2, -2, -2), (=2, -2, -2), (-2, 2, —2)}
with {(0,0,0)} being the intersection of all 8 cubes.
Let T' be the set of points with positive 3rd coordi-
nate (érr = 3). See figure 2.2. If the smallest in-
dexed point is, say, p = (1,1, —1), then O(T) contains
simplices conv {p, a, b, c} and conv {p, a, b,d}, among
others.

See figure 2.3 for an illustration of restricted quad
tree triangulations. (A quad tree is a 2-dimensional
counterpart of an octree.) Observe that Oy, and Ox,
are homeomorphic to X; and X, respectively, while
Ox, is not homeomorphic to X3.

3 Homeomorphic Triangula-
tion for Compact Manifolds

In this section we shall state the conditions under
which the restricted octree triangulation is a topolog-
ical triangulation of X. These conditions apply only
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Figure 2.2: Constructing Ox. T' = {a,b,c,d}, where
a = (1,1,1),b = (-2,-2,2),c = (2,-2,2) and d =
(=2,2,2). £y = 2. The index of a is smaller than that
of b,c and d. (a) A triangulation of points a’,¥,c’,d’
where z' denotes the projection of z € T' on the 2-flat
orthogonal to Cr:. (b) The triangulation O(T") obtained
by projecting the triangulation in (a) into R3.

when X is a compact m-manifold, 0 < m < 4. First,
we introduce some terminology.

Topological balls and manifolds. Homeomorphs
of open, half-open, and closed balls of various dimen-
sions play an important role in the forthcoming dis-
cussion. For k > 0, let o be the origin of ®* and
define

H = {z=(&,....&) €R" | & 20},
B* {z € R* | |zo| < 1}, and
Skl = {zeRF||zo|=1}.

For convenience, we define R* = H* = B* = §* = 0 if
k < 0. An open k-ball is a homeomorph of R*, a half-
open k-ball is a homeomorph of H*, a closed k-ball is
a homeomorph of B*, and a (k—1)-sphere is a homeo-
morph of S¥~!. For k > 1 these are disjoint classes of
spaces, that is, open balls, half-open balls, closed balls,
and spheres are pairwise non-homeomorphic. This is
not true for k = 0: open, half-open, and closed 0-balls
are points, and a 0-sphere is a pair of points.

X C R is a k-manifold without boundary if each
z € X has an open k-ball as a neighborhood in X.
X C R3 is a k-manifold with boundary if each z € X
has an open or half-open k-ball as a neighborhood in
X. The set of points without open k-ball neighbor-
hood forms the boundary, bd X, of X. Note that the
boundary of a half-open k-ball is an open (k — 1)-ball,
which is therefore without boundary. The interior of
a manifold X is int X = X — bd X it is the set of
points with open k-ball neighborhoods. A manifold
X C R® is compact if it is closed and bounded. A
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Figure 2.3: (a) Quad tree based decomposition of three
geometries X;, X2 and X3. (b) Restricted quad ree tri-
angulations. Oyx, and Ox, are homeomorphic to X,
and X, but Ox, is not homeomorphic to X3.

manifold Y C X is a submanifold of X.

Generic intersection and closed ball properties.
Let P C R2 be a convex polyhedron of dimension £
and let X C ®® be an m-manifold without boundary.
We say that P intersects X genericallyif XN P =10
or X NP is an (m + £ — 3)-manifold and X Nint P =
int X N P. If X has a non-empty boundary, then P
intersects X generically if P intersects X and bd X
generically.

Let X C R3 be a compact m-manifold, with or
without boundary. Let T be a strictly balanced tree
decomposing X and let S = S,. S has the generic in-
tersection property for X if for every subset T' C S, Cr
intersects X generically. S has the closed ball property
for X if for every T C S with £ = m + 1 — {7, the
following two conditions hold.

(i) Cr,x is either empty or a closed £-ball,
and

(ii) Cr,pa x is either empty or a closed (£—1)-
ball.

Remark. The generic intersection and closed ball prop-
erties were first defined for restricted Voronoi cells in
[4]. See [4] for a related discussion on non-degeneracy.

THEOREM 3.1 Let X C R2 be a compact m-manifold.
Let 7 be a strictly balanced octree such that S = S;



has the generic intersection property and the closed
ball property for X. Then X =~ |Os,x|.

To prove the theorem, we shall need the following
lemma.

LEMMA 3.2 Let X, m, 7 and S be as in Theorem 3.1.
Define C; = {Cr,x | Cr,x isan i-ball}, 0 < i < m.
There exist simplicial complexes K; and homeomor-
phisms k; : |JC; = UK = |Ki, so that K;_; C K;
and h; agrees with n;_; on | JC;_;. Furthermore there
exists a bijection 8 : vert K,y = (Up<i<m Ci so that
or € K. iff the elements of B(T) can be arranged to
form a linear chain under the inclusion relation.

Lemma 3.2 can be proved by first proving
Lemma 4.2 in [4] and then following the proof of Theo-
rem 4.3 in [4]. We omit the details. Lemma 3.2 implies
that the underlying space of X = K,, is homeomorphic
to X = |JCm. To complete the proof of Theorem 3.1
we will show that |K| =~ |Ox]|.

We need some terminology. For T' C S such that
Cr,x # 0, let hr denote the (¢r — 1)-flat orthogo-
nal to aff Cr and containing the origin, let sy de-
note the point in aff Cr N |O(T)|, let hr(g) denote
the orthogonal projection of ¢ € R2 into hr and let
hr(Q) = {hr(q) | ¢ € Q} for Q@ C R%. We note
that h7(|O(T)|) is a star polytope®. Furthermore, the
point hr(sz) lies in its kernel (proof omitted). An ¢-
chain of T C S is a chain C of subsets of ur under the
inclusion relation such that if 73,7, € C and T} C T3,
then £, < £r,. Let Cr denote the set of all £-chains of
T. We define the star subdivision of hr(|O(T)|), sd T,
as follows. If &7 = 1, sdT = {hy(sr)}. For &7 > 1,
sd T = {conv {hr(sp') | T € C} | C € Cr}.

sd T induces a subdivision sd’ T of |O(T')| (thru the
inverse of the orthogonal projection into hr). It can
be verified that oy € sd' T iff opp(v) €8d T.

Define the star subdivision of Ox = Os x to be
sd' Ox = U sd'T.
Cr,x#0

Since |Ox| = |sd' Ox|, we have |Ox| =~ |sd' Ox]|.

6 A polytope is the underlying space of a simplicial complex.
A star polytope is a polytope P for which there exists a point
p € P such that for every point g € P, the edge pq is contained
in P. The set of all such points p is called the kernel of P.
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Thus to complete the proof of Theorem 3.1, we only
need to show that |K|~ [sd' Ox].

The function f : vertsd’ Ox — vertK defined
by f(sr) = B~}(Cr,x), where 8 is the bijection in
Lemma 3.2, is a bijection. By construction of Ox
and K, oy € K iff op-1(v) € sd’ Ox. It follows that

K| ~ |sd’ Ox|.

Remark. A generalization of the above theorem to
compact 3-manifolds in ®¢ can be found in [11].

4 Extension to General Topo-
logical Spaces

The previous section described sufficient conditons for
Ox to be homeomorphic to X when X was a mani-
fold. In engineering practice, one encounters geome-
tries which are not necessarily manifolds. In this sec-
tion we extend the sufficient conditions to cover more
general geometries. To present the conditions suc-
cinctly, we use finite regular CW complexes. Intu-
itively, the gist of the conditions is that X should be
decomposed into balls appropriately. See also [4, 10].

A closed ball is called a cell, or a k-cell if its dimen-
sion is k. A finite collection of non-empty cells, C, is a
regular CW complez if the cells have pairwise disjoint
interiors, and the boundary of each cell is the union of
other cells in C. Let X C R3 be a topological space,
let 7 be a strictly balanced octree decomposing X and
let S = S;. S has the extended closed ball property for
X if there is a regular CW complex C, with X = |JC,
that satisfies the following properties for every T C S
with Cr x # 0:

(1) there is a regular CW complex C7 C C so that
Cr,x =UCr,

(ii) the set C§ = {y € C | inty C intCr} contains a
unique cell, 57, so that nr C v for every v € C3,

(iii) if nr is a j-cell then nrNbd Cr is a (j —1)-sphere,
and

(iv) for each integer k and each k-cell v € C§ — {nr},
¥NbdCr is a closed (k — 1)-ball.

Furthermore, S has the eztended generic intersection
property for X if for every T C S and every v € C7—C5.



there is a § € C% so that v C é.

For sake of brevity, we omit a discussion of the above
conditions and state the following theorem.

THEOREM 4.1 Let X C R® be a topological space.
Let 7 be a strictly balanced octree such that S =
S, has the extended generic intersection property and
the extended closed ball property for X. Then X =~

|O0s, x|

5 Concluding Remarks

We have discussed octree triangulations restricted by
a topological space X and presented sufficient condi-
tions that guarantee a homeomorphism between the
triangulation and the space. Our method is based on
decomposing X by cubes, requiring the intersections
of the cubes and X to be balls and then appropriately
connecting the centroids of the cubes to obtain the
restricted octree triangulation. Homeomorphic trian-
gulations were studied in [4]. The octree decompo-
sition of the space X studied in this paper gives an
automatic way of generating the vertex set of the tri-
angulation which was a sore point of the method in [4].
It would be interesting to see how this approach per-
forms (the number of simplices generated, the quality
of simiplices, etc.) on geometries generated by solid
modelers. This would require verification of the con-
ditions in sections 3 and 4, which in turn might put
constraints on the functional description of the geom-
etry of the domain.
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