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Abstract

Using a simplez-crossing counting technique we prove:
if the number of non-improperly intersecting simplices
with vertices in a set S of n labelled points in R? is
O(nl4/31), then there are 2°(" 14/21) different geometric
simplicial complezes with vertices in S.

1 Introduction

In this paper we consider the problem of counting the
number of combinatorially different geometric simpli-
cial complexes with vertices in a fixed set of n labelled
points in R9¢, the d-dimensional real space. Geomet-
ric simplicial complexes consist of geometric simplices
rather than topological simplices. Precise definitions
are given in Section 2.

A related problem of counting the number of com-
binatorially different triangulations with vertices in a
fixed labelled point set is considered in [3, 8]. Let t4(n)
and s4(n) denote the maximum number of different
topological and geometric triangulations respectively
of S%, the d-dimensional sphere, with n being the
number of vertices. Kalai [8] showed that c;nl¥/3) <
logta(n) < can/¥?llogn for some constants c,c;.
In [3], Dey showed that logsa(n) = O(nl%/ 2) if at
most O(n[%/?1) [d/2]-simplices can be embedded in
R? without any crossing. Actually, this upper bound
also holds for log ra(n), where rg(n) is the maximum
number of geometric triangulations possible with n
points in R¢. By a geometric triangulation of a point
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set in ¢ we mean a triangulation of the convex hull
of the point set with geometric simplices. The only
known lower bound for log r4(n) is §(n).

Let x4(S) denote the number of different geometric
simplicial complexes with vertices in a set S of labelled
points in R¢, and let

k4(n) = max

SCR4,|5|=n xa(S).

In contrast to geometric triangulations, it is easy to
establish an Q(n(%/21) lower bound on the the loga-
rithm of k4(n). However, the upper bound on the
number of geometric triangulations does not provide
an upper bound on the number of geometric simpli-
cial complexes. This is because, for d > 2, not all
simplicial complexes in R¢ are extendible to a trian-
gulation of the underlying point set. For example, the
boundary complex of the Schonardt polytope [11] is
not extendible to a triangulation of the corresponding
vertex set.

Previous results on the number of simplicial com-
plexes dealt with all possible simplicial complexes on
n vertices in all dimensions. Let simp(n) denote
this number. It follows from the results of [9, 10]
that log simp(n) = ©( (ln'/'zj)). This paper concen-
trates on counting the number of simplicial complexes
in a fixed dimension R¢. Specifically, we show that
logk4a(n) = O(nl%?1) matching the lower bound if
O(nl#/21) simplices can be embedded in ®? without
crossing. In light of the result of Goodman and Pollack
[7], this bound for a fixed point set can be extended
to cover all point sets of some fixed cardinality. More
specifically, they show that there are at most 20(n logn)
combinatorially different configurations of n points in
R4, This result combined with ours shows that there
are at most 20(" 14/21 +n.logn) combinatorially different
geometric simplicial complexes with n points in Rd
provided at most O(nW 2]) simplices are embeddable
in R4 without crossing.

The rest of the paper is organised as follows. In
the next section, we introduce some terminology and

-31-



present the statement of our main result. In section 3,
we prove a crossing result. Our method is an exten-
sion of the method in [4], where it was used to prove
a bound on the number of crossings of triangles in ®3.
Section 4 generalises the argument for counting trian-
gulations in [3] to establish the main result. In section
5 we state some open problems.

2 Definitions and Preliminaries

A d-simplez or is the convex hull of an affinely in-
dependent point set T of size d + 1. ov is a face of
or if V. C T. A (geometric) simplicial complez K is
a finite collection of simplices satisfying the following
properties.

(a) for € K and V C T, then oy € K, and

(b) If oy,ov € K, then oy Noy =ovnvu-

K is a k-complez if the largest dimension of a sim-
plex in K is k. For any collection £ of simplices (not
necessarily a simplicial complex), we define

£Y) = {o € £ |0 is a j—simplex}.
£ is the set of vertices of L. -

Two simplicial complexes K1, K2 with vertices in a
labelled point set are combinatorially different if and
only if there exists a simplex ov such that ov € K,
and oy € K; or oy € K; and oy € K3. Let k4(S)
denote the number of different geometric simplicial
complexes with vertices in a labelled fixed point set
S C R?, and let

ki(n) = max k4(S).

SCR4,|S|=n

We prove the following.

Theorem 1. logra(n) = O(nl%)), if at
most O(nl4/31) simplices are embeddable in
R? without crossing.

It is easy to see that logkg(n) = Q(nf41). Let
p(t) = (t,%3,...,t%) € R be a point on the moment
curve [5]. Let S ={p(i) |1 <i<n}andlet 7= r4).
Let K denote the collection of all simplices oz, T C S,
|T| < 7. Then for any two simplices, oy,0v € K,
|U|+|V| < d+1. Since S is in general position, it fol-
lows that K is a simplicial complex. Let £ denote the

collection of (7 — 1)-simplices in K. Clearly, the car-
dinality of £ is ©(n"). For every L' C L, (K- L)U L’
is a simplicial complex. This proves the lower bound.

The combinatorial bounds proved in this paper are
based on the following proposition.

Conjecture 2. If K is a simplicial com-
plez embedded in R, then the total number
of simplices in K is O(n[§1), where n is the
number of vertices of K.

If K is a d-complex, the conjecture is true by a result of
[6]. It is widely believed that the conjecture is true in
general. Two simplices oy and oy have an improper
intersection if they intersect but the intersection is
not oynv (that is, the intersection is not a common
face). Conjecture 2 says that the size of a collection of
simplices, with vertices from amongst n fixed points
in R¢, such that no two simplices in the collection
have an improper intersection is O(n"), where 7 =
[4]. Two simplices oy and oy cross if they have an
improper intersection and U NV = @. A collection
of simplices is crossing-free if no two simplices in the
collection cross. An improper intersection is a non-
crossing intersection if it is not a crossing. To prove
Theorem 1, we will need a bound on the size of a
collection of crossing-free simplices.

Remark. Since the total number of simplices with ver-
tices in a fixed point set S C R of size n is O(n¢t?),
it follows that xa(S) = (%%,)) = 20(°71°6") if con-
jecture 2 is true.

3 A Lower Bound on the Num-
ber of Crossings

Let £ be some collection of simplices with vertices
from a labelled fixed point set S C R? of cardinality
n. Further suppose that if or € £ and V C T, then
ov € L. Let t; denote the cardinality of £L(*),0 < k <
d. As before, we let 7 = [2]. Let z(9)(n, j, ;) denote
the number of distinct crossings of j-simplices in L.
Below, we shall prove a lower bound on z(d)(n, j,t;)
when Uo<k<; L(*) is a simplicial complex. Note that
this requirement and Conjecture 2 imply that ¢ <
¢k -n" for some constants cx, 0 < k < j. We shall need
the following lemma which can be found in 3, 4].
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Lemma 3. For ky + ky > d, let Ay C R? be
a ki-simplez that improperly intersects a ka-
simplez Ay C R%. Then there ezists an £;-
face 01 of Ay and an £;3-face o2 of A; such
that £, + ¢, = d and o, crosses o3.

Using Lemma 3 and Conjecture 2, we give below
a bound on the number of j-simplices in £ if no two
j-simplices of £ cross.

Lemma 4. If Conjecture 2 is true then the
following holds. Ift, < ¢ -n" for some con-
stants cx, 0 < k < j, then there ezists a
constant c so that if t; > c-n", then there
ezists a pair of crossing j-simplices in L.

ProoF. Conjecture 2 guarantees a pair of improperly
intersecting j-simplices if £; > b;-n" for some constant
b;. Suppose that there is no crossing pair amongst
the t; j-simplices in £. The outline of the proof is the
following. We shall remove from £ one of the two j-
simplices involved in a non-crossing intersection. We
show that we remove at most b2 -n” j-simplices by this
process, for some constant b;. At the end, we are left
with at least (c — bz) - n” j-simplices such that no two
of them have a non-crossing intersection. If ¢ — by >
by, then Conjecture 2 contradicts the supposition that
there is no crossing pair of j-simplices.

We remove j-simplices involved in non-crossing in-
tersections according to the following procedure. We
let £’ denote the current set of j-simplices; initially,
L' is the same as L), but it changes as we remove
j-simplices. For a j-simplex oy € L', let

Ty = {0 € L' | 0,0v have a non-crossing intersection}.

We remove all simplices in £y from £’. In order to
keep track of the number of simplices removed, we
use the following charging scheme. Let oy € Xy,
and let I = UNV. Then, we charge oy_s one unit
for the removal of oy. By Lemma 3, oy_; has an
improper intersection with oy. We claim that oy_1
gets charged at most (’l“}'ll) units. First, we show that
oy—_1 is never charged at a later step. Suppose it is
charged at a later step for the removal of some sim-
plex oy from Zy.. However, since oy_r is a face
of oy, it follows that oy has an improper intersec-
tion with oy. Since we supposed that there are no
crossings, this intersection must be non-crossing. But
then, oy+ would be removed from £ when Xy was pro-
cessed. Thus, it cannot be present in Ty at a later
step. This also means that oy_r was not charged by

an earlier step. Finally, it is clear that the step of re-
moving the simplices in £y can charge oy_; at most

(j[#) units. Let b3 = To<k<j ck- Since the size of

Uo<k<; L) is at most b3 - n7, it follows that the total
number of j-simplices removed is at most b;-n”, where
by =27 +1. bs. m}

Below, we prove a lower bound on z(d)(n, Jrtj)-

Lemma 5. Let j > 7. If for some constants
¢,¢j_1, tj—1 < ¢j_1-n" and there exists a pair
of crossing j-simplices whenevert; > c-n",
then there exist constants ¢/, h so that

1+'7.‘f
. n n
2 t) 2 ¢ (21‘ n 2)'(tj/ (J + 1)) ’

when t; > h-n". Here, v; = J—ﬂ—'-_l; > 1.

PrROOF. Since we are.interested in a lower bound,
we can assume that £(7) realises the lower bound for
z(9)(n, j,t;). Let bound denote the term ¢’ - (2]."‘,_2) .

1475
(t,- / (J_':_l)) ’. We shall proceed by induction on ¢ =
t;. We choose d = c+1. We have at least t—c-n” > n”

crossings since there is a crossing for every j-simplex
above c-n".

First, we dispense away with the case where n is no
greater than the constant ng = 2j+2. In this case, ¢ is
also a constant, and we can make bound < 1 by simply
choosing a sufficiently small ¢/. Thus, the lower bound
holds in this case since as we saw above, we have at
least n” crossings. For the rest of the induction step,
we will assume that n > ng. We have two cases.

Case 1 (Base Case). h-n" <t < (h+¢j_1)-n".
Since we have at least n” crossings, it suffices to
show that bound < n7. Since n > 2j + 2, (j_'"_l) >

by -n?+! for some constant b;. Since t < (h+cj-1)-n7,
we have

n2j+2 . (h + cj_l)l""'j . n‘r‘('75+1)
B{H) L pli+1) (15 +2)

'(htei_. )t . . .
where b; = ﬂ—:'(‘?_r,,;r}——’ is a constant. b; < 1if ¢’ is
1

bound < ¢’- =by-n",

small enough.

Case 2 (Induction Step). t > (h+c¢j_1) - n".

Let T(w) denote the set of j-simplices in L) that
are not incident to the vertex w € L(°) and let
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t(w) = |T(w)]. Now t(w) > t—1tj_1 > h-n'.
For every pair of crossing j-simplices A; and Az, we
count all vertices except those incident to A; and
A,. Alternatively, this count can be obtained by
summing up all crossings between j-simplices in T'(w)
for each vertex w. Thus, we have (n — 2j — 2) -
x(d)(nv ht)= Ewez(” z(d)(n-l,j,t(w)) >c- (2';112 .
(Ewe oo Hw)t /(’;;11)1”’ ) by induction, since
t(w) > hen". Now ¥, c o0 t(w) = (n—j—1)-t. Thus

. 1475

Tuece Hw)+ > n- (!:‘:J;—llf) . This implies
d 1 j—1)-t 147

. n— n—-j—1)
that £9(m, 1) 2 ¢ - () ()
147;
P ny, t
2c (2j+2) (m) . o

By the pigeon-hole principle, it follows that there is
at least one j-simplex in L) that crosses many other
j-simplices. Specifically, we have the following lemma.

Lemma 6. Let Conjecture 2 hold and let j >
7. Then there ezists a j-simplez in L that
crosses at least ;ﬁfq}?,ﬁy other j-simplices
of L for some constant h; > 0, whent =
tj > h-n".

4 Counting the Number of
Simplicial Complexes

Let S C R? be a labelled fixed point set of cardi-
nality n. Let F(j) denote the set of all j-simplicial
complexes with vertices in S. Let A(j) denote the
set of all j-simplices with vertices in S. For a sim-
plicial complex K € F(j — 1) and a collection of j-
simplices T C A(j), define £(j, T, K) = {KUT' | T' C
T, KUT' is a simplicial complex}. Thus £(j,T,K) is
the collection of j-simplicial complexes K’ such that
j-simplices of K’ come from T and the k-dimensional
simplices of K’ are the same as those in K, 0 < k < j.
Define

F(J’tv K:) = TgAr?j?jtTht |‘C(JaT7 ’C)L
and
FGity= Y. F(@tLK)

KeF(i-1)

Observe that F (j, (J.;;l)) = |F(j)|. We shall show
that F(j,t) = 20(*") for 0 < j < d if Conjecture 2
holds. Since x4(S) = Yocj<a F (j, (j:-1))’ it follows

that k4(S) = 2°(®"). Thus to establish Theorem 1,
we only need to prove the following lemma.

Lemma 7. F(j,t) = 2°("") if Conjecture 2
holds.

ProoF. We shall use induction, both on j and t. We
shall inductively assume that |F(j — 1)| = 20(n™) and
show that for every K € F(j — 1), F(5,t,K) = 20(n7),
whence it follows that F(j,2) = Y xcex(j-1) 20(n") —
20(n") | and so |F(j)| = 2°("7).

For j < 7, the number of j-simplices with vertices in
S is bounded by n?*! < n”. Thus |A(j)| is bounded
by O(n"), and so the size of the power set of A(j) is
at most 2°(*"). This implies that F(j,t,K) = 20(*7)
for any complex K € F(j — 1). Because of the above
argument and since |F(0)| < 27, it follows that the
inductive hypothesis holds for j < 7. In the following,

we consider the case when j > 7, and induct on ¢.

First, we dispense away with the case j = d. Let
K € F(d-1). Let T C A(d) be a collection of d-
simplices so that for every 0 € T', KU {0} is a d-
complex. We claim that a (d—1)-simplex oy of K can
be incident to at most 2 d-simplices in I'. Suppose
not and let oyu{p,}» TUU{ps}» 3Dd OUU{p,} be three d-
simplices of T incident to oy. At least two points from
p1,p2 and pa, say p; and p3, lie on the same side of
the hyperplane aff(U). But then oyy(p,} improperly
intersects some (d — 1)-face o’ of oyyp,}. Since o’ €
K, it follows that K U {oyu{p,}} is not a simplicial
complex, contradicting the assumption that oyyu{p,} €
T. Thus at most 2 d-simplices of ' can be incident to
a (d—1)-simplex of K. Since Conjecture 2 implies that
the size of K(9-1) is O(n"), it follows that the size of
T is O(n"). For any t, F('j, t,K) < |£(j,T,K)| and so
we have F(j,t,K) = 2°(""). In the following, we only
consider the case when 7 < j < d.

Let A; be a large enough constant (to be determined

* later) so that A; > h and h; > }’;, where h is the

constant in Lemma 5 and h; is the constant in Lemma
6. Fix a complex K € F(j—1), and consider aset T' C
A(j) of size t that realizes the maximum F(j, ¢, K).
When t < ); - n7, the number of subsets T of T is
bounded by 2°(*"). The bound on F(j,t, K) follows.

Let t > )j -n”. We show that F(jt,K) <
c™ - f(j,t), where C = (2)\)A+A"i" and f(j,t) =
Ty

(;‘%)_;\" W1, Certain useful properties of f(j,t) are
discussed in appendix. In particular, property (P.1)
implies that f(j,t) <1for A;-n" <t < (jil), imply-

-34-



ing that F(j,¢,K)=2°(""). We divide the proof into
two cases.

Case 1 (Base Case). A; -n" <t <2);-n".

Assume A; > 2. Since the number of subsets of T
is at most 22*5'™", we have

F(j,t,K) < 229
T 5. T
(@223 - (¢/n7) T - 55, )

A;en” Y

IA

‘\;J‘ Al

(2377 - (225) Gt

Cn, : f(Jv t)'

IA

Case 2 (Induction Step). t > 2A; - n”.

Since K is a simplicial complex, by Conjecture 2 the
number of k-simplices in K is O(n”) for 0 < k < j.
So Lemma 7 applies with £ = K UT. Let o be the
j-simplex in T that crosses at least h; - n,,’_‘—(—-—;;?-(;-;;y >

A—;”;‘;"‘% other j-simplices of T. We get the following
recurrence.
7’ . t"j

F(5,t,K) < F(j,t — 1,K)+ F(j,t - P )-

Let p=t/n". Then 2}; < p < nf+1-7,

: 'Yj At - 'YJ . p":i . n‘r"ﬁ
- AJ T p-n = A] T

p-n’(l—('rj/’\j)'iﬁﬁ-_'/n')
> p-n’ (1=15/3)
> Aj-n” if A > 2.

So we can apply the inductive assumption and get

Y5 * 1Y

F(,t,K) < F(j,t—l,’c)'*'F(j,t—m, )

< C",-f(j,t—l)-FCm,-f(j,t—

We note that property (P.5) applies only when p is

1
larger than the maximum of (2A§)l/‘7ﬂ' and e +
ﬂ%. p can be coerced to be always larger than this
maximum by choosing a sufficently large A; since p >
2);.

To wrap up the proof, we simply choose }; large
enough so that it satisfies the requirements of the
above proof and so that the properties of f(j,t) dis-
cussed in the appendix hold. [m]

ny . t'Yj
AJ . n‘r"ﬁ

< C" - f(j,t) by property (P.5) of f(j,1).

5 Concluding Remarks

We have derived a tight upper bound on logkg4(n)
based on a conjecture that any simplicial complex
has at most O(n[%/?1) simplices embeddable in R?
without crossing. A natural question that arises is
whether these bounds extend to topological simpli-
cial complexes. Let A,_; denote a geometric (n — 1)-
simplex and let £ be the collection of all j-faces of
Ap-1,0 < j<d+1. Let £ be a subcomplex of £
and let g : (U,eor ) = R? be an embedding. Then
K = {g(0) | ¢ € L'} is a topological simplicial complez
in R9. The vertex set of K is g(£'(?)). Although we
assumed a linear embedding of simplices, our result is
valid for any fixed map ¢’ : (U‘"E ¢ 0) = R% such that
g’ restricted to each o € £ is an embedding. However,
our counting method fails when several such maps are
considered. Hence, the result does not immediately
extend to topological simplicial complexes since it is
possible to embed the simplices of £ in ®? in more
than one way.

Related to determining the number of geometric
simplicial complexes is the question of determining
the number of geometric triangulations, r4(n), on n
vertices in ®%. Clearly, the upper bound on log x4(n)
holds for logr4(n), see also [3]. As mentioned in sec-
tion 1, the lower bound on logr4(n) is 2(n). Reducing
the huge gap between the upper and lower bounds on
log r4(n) remains a challenge till date.
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Appendix

AT
Properties of f(j,t) = ('—f,-)_k’ -1, (We shall
assume that ¢t < ni+1.)

P.d. f(j,t) <1forn” <t< jil).

This is easy to see since ;& > 1, and the exponent
is negative.

P.2. f,(jvt) = %f(]'t) > A5 ,L:";i . f(]!t) ift >

T

“t.nT.

ev;

Again, this is straightforward since f'(j,t) = f(j,t)-
Aj ’-‘—:-;;i ((vj —=1)-In (&) — 1). This implies that
f(4,t) is a monotonically increasing function of ¢ when

1
t>e’"t.-n7,

. . _L_
P.3. f(j,t - 1) < f(],t) . ;—-g_"—;-:::’?v; ift>ew -
n” + 1.
By the mean value theorem, f(j,t) — f(j,t -1 =
f'(j,t') for somet —1 < ‘t’. < t. By property (P.2),
FG.t) = FG t—1) > Aj- B>+ (i t—1). (P.3) follows.

Pa. f (jt— 5255 ) < X2t £(3, 1) where X =

s
jn

(47)?" is a constant, provided A; > 2v; and j < d.

_ oyyetTiT? . A t =
Let H = X';T-—-;J-. Since wT — (;‘?:13)34'1 T S 1

and A; > 2v;, we have 0 < p < % As a result,

1+pu< (1—_# This is easy to see when v; > 2
since we have (—1-—_—;1)-,&—_5- > 1> 1— u2. The only case
when v; < 2 is when the dimension d is even and
j = d. But this is precluded since j < d.

-

Observe that f(j,t) = (&) . Also, f(4,t(1 -
W) = f(it-s25s) = alitw) - bt w)
,
where a(j,t,p) = (,%,)““"“’1"- , and b(j,t,p) =
.

((1 - p)—Tl) -7 Now,

s .
airhm) = (7)o == f(3, 1) T
< f@,t)'** since 1+p < 1

(1-p)"
and f(j,t) <1

= f(j,t) - n"jtN.
We claim that g(p) = (1 — p)-?l' <4for0 < p<
%- To see this, note that by Taylor series expansion

Ing(p) = Yiso ;"‘r'l-, which is an increasing function
of p > 0. Since e® is an increasing function of z, it
follows that g(p) < g(3) =4for 0 < p < 3+ Now,

v

. =1 =
b(],t, ”,) = ((1 - “) M )(l—u)'b
- 1
< 40-w"77 gince 4> (1 —p)*
< (4'75)2' since0<pu<1l/2andvy;—1< .
- . . ® 5 -
P5. f(t—-1)+f (],t— A—;'J—nﬁy%) < f(j,t) when

i
j < d, t > max{e% " -n7 + 1,(2);)"/% - n"} and
Aj > 2X;, where X/ is the constant in (P.4).

Because of properties (P.3) and (P.4), it suffices to
show that
nT

1Y
- L. — <1,
15+ Aj - A o P

which is equivalent to showing that

AN AL M
nr) =\ N =X :

The inequality holds because the term on the right is
bounded by (2X})}/.
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