Optimal Approximation of Monotone Curves on a Grid*
(Extended Abstract)

Tetsuo Asano! Naoki Katoh? Elena Lodi® Thomas Roos?

! Dept. of Applied Electronics, Osaka Electro-Communication Univ.,
Neyagawa, Osaka 572, Japan (asano@djinni.osakac.ac.jp)

2 Kobe University of Commerce, Kobe,
Japan (naoki@kobeuc.ac.jp)

3 University of Siena, Siena,

Italy (lodi@di.unipi.it)

4 Theoretische Informatik, ETH Zentrum,
CH-8092 Ziirich, Switzerland (roos@inf.ethz.ch; Fax: +41 1 632 1172)

Abstract. This paper presents efficient algorithms for approximating a curve by a polygonal
chain with vertices on a grid. We are given an z-monotone curve y = f(z) consisting of N pieces
on some m x n grid. Our goal is to compute an approximation of the given curve by an z-monotone
polygonal chain whose vertices are points of the grid. For that, we discuss several optimization
criteria such as minimizing the area of the region bounded by the given curve and the polygonal
chain.

Our approach is based on a reduction to the computation of minimum-cost paths. We present an
O(N + n?) time and O(N + n) space algorithm for computing an optimal z-monotone polygonal
chain. If we add the restriction that the horizontal lengths of the line segments used for the
approximation is bounded by k, the time complexity can further be reduced to O(N + kn). In
both cases, the time complexity does not depend on the range m of the function. Applications of
this problem can be found, e.g., in the area of computer graphics.

1 Introduction

The approximation of complex geometric objects by simpler ones that capture the relevant features
of the originals is a very important problem which appears in many areas of computer science since
more than 20 years. The real need for simplification can be elegantly motivated by line simplifica-
tion/generalization in geography where one often deals with different levels of abstraction. Since the
early works by Douglas/Peucker [3] and Ramer [18], many different approximation strategies have been
studied, some of which are even N'P-hard [6].

In the area of cartography & GIS, line simplification methods are often based on the detection of
critical points [2, 16, 21]; however, they always have to “incorporate information about the geometric
structure of geographic phenomena” [12, 14] meaning that a good approximation can only obtained
with high-level geographic information. A statistical approach describing the benefits of geometric sim-
plification in geography can be found in [15]. Similar techniques appear in computer graphics when ap-
proximating digitized images by polygons [11, 19, 20]. In computational geometry, Imai and Iri [8, 9, 10]
and Natarajan [17] gave linear time algorithms for the problem of approximating a piecewise linear
function with a minimum number of line segments according to a given tolerance . Recent surveys of
approximation techniques can be found in [4, 5, 6, 7].

In this paper, we study a new variant of this problem: the optimal approximation of an z-monotone
planar curve on some m x n grid by an z-monotone polygonal chain of line segments. Notice that any
planar curve can be decomposed into z-monotone pieces. We measure the quality of the approximation
with respect to the area of the region bounded by the curve and the polygonal chain, among other
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approximation schemes. The existing straight-forward algorithm for computing an approximation simply
computes points by rounding the intersections between the curve and the grid. The quality of this
method, however, is not always satisfying. Actually, there are several imaginable approximation criteria.

Nevertheless, in the description of our approach,

we mainly focus our attention to the so-called squared-

area measure, although our algorithms apply to other approximation criteria, as well.

We solve this problem by reduction to minimum-cost paths in some networks. Our first (simple)
algorithm computes an optimal approximation in O(N + n?*m?) time and O(N + n + m) space. Our
second and more sophisticated approach runs in O(N + n?) time and O(N + n) space. By adding
the restriction that the horizontal length of each approximating line segment is bounded by k, the time

complexity can further be reduced to O(N +kn).

Notice that in the latter, the time and space complexity

does not depend on the range m of the function.
A similar problem, the approximation of a given polygonal chain by another simpler chain has been
studied by Imai and Iri [9, 10]. Their algorithm runs in optimal O(n) time.

2 Preliminaries

At the beginning, we are given a continuous function

f:lo,n=1—=[0,m-1], z+ f(z)

on the domain D := [0,n — 1] x [0, m — 1] which is covered by a regular grid

G:={(z,y) |z=0,...,n—1 and y=0,...,m—1}

We only assume that some basic computations
(e.g. the integral) depending on the measure of
approximation are available in constant time.
Of course, any function f is z-monotone; here
z-monotonicity means that the intersection of
any vertical line with f is connected.

Our goal is to approximate (in a certain way)
this given function by an z-monotone polygonal
chain under the restriction that the vertices of
the chain have to be taken from the grid G (see
Figure 1). Thus, the output of the algorithm
will be a chain P of length I:

P = (Po,...,P)

with P; = (Z;,) € Gforalli =0,...,l.

As P is z-monotone, the z-coordinates of the
vertices of the chain form a monotonously in-
creasing sequence: 0 = £ < ... <y =n-1
that spans the interval [0,n — 1].
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Fig. 1. Approximating an z-monotone planar curve by
a polygonal chain.

There are several imaginable optimization criteria, among them very intuitive ones such as minimiz-
ing the area of the region bounded by the curve f and the polygonal chain P:

n—1
min /
P z=0

or the so-called squared-area measure

n—1
min /
P z=0

|f(z) - P(z)| dz

[72) - ‘P(z)]zd:c

that measures the integral of the squared function difference (not the square of the area, of course).
Yet another optimization criterion (among many others) could be the minimization of the maximum

vertical distance

min _max |f(z) = P(=)|
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In the following investigation, we will focus our attention on the squared-area criterion. Concerning
the description of the input function f, we assume that it is specified as a continuous chain of N
z-monotone curves fo, ..., fn—1 where f; is defined over an interval [Z;,Z;41), for i=10,..., N —1, and
0=Zg<...<Zy=mn—1. At first, in a preprocessing step, we compute all integrals

/(: f(z) dz, /Oi:r -f(z) dz and /Oif(;c):' dr

foreachi=1,...,n— 1. It is easy to see that these computations can be performed in O(N + n) time
by merging the sorted lists (0,...,n— 1) and (Zo,...,ZN)- .

Once these values have been computed, all integrals [ f(z)dz, [/ = - f(z)dz and [} f*(z)dz can
be calculated by differences in constant time. Notice that in the case of the squared-area criterion, we
do not have to compute intersections between the curve f and the polygonal chain, while in the case of
minimizing the area, these intersections would be required.

3 Reduction to Minimum-Weight Paths

Our first algorithm for computing an optimally approximating polygonal chain is based on a directed
graph defined as follows:

— The points of the grid G define the vertices of the graph.

— Any two vertices (zi,¥i), (zj,y;) € G with z; < z; share a directed edge ((J:;, ¥i), (=5, yj)) with an
associated weight
z;

8(zi, vi, zj,y;) :=/ [f(z)—a;jz—b,-j]zdx

z;
where y = a;jz + b;; is the equation for the line passing through the two points, that is,

Yi — ¥
%= o and  bi; = yi — ai;z;

— Furthermore, we add a directed edge with zero weight between any pair of vertices on the same
vertical line.

This provides a graph with n - m vertices, ©(n?m?) edges and non-negative edge weights. Now, it is
obvious that an optimal z-monotone polygonal chain corresponds to a minimum-weight path starting
from vertex (0, 0) to vertex (n — 1,0). The special structure of the graph allows the following minimum-
weight path algorithm:

[Algorithm 1]
d[O] = 0;
forz=1ton—1do
fory=0tom—1do
v[y] = oo;
for ' =z — 1 downto 0 do
fory =0tom—1do
evaluate the squared-area difference é6(z’,y, z,y)
for the line segment between (z’,y’) and (z,y);
if d[z’] + 6(z', ¥/, z,y) < v[y]
then o[y] = d[z'] + 8(z', ¥/, 2,y)
let d[z] be the minimum among all v[y], for y=0,1,...,m—1;

Theorem 1. Algorithm 1 computes an optimally approrimaling z-monotone polygonal chain in
O(N + n?m?) time and O(N + m + n) space.
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Proof. The correctness and the time complexity of the algorithm is obvious. The space complexity can
be achieved if we avoid constructing the entire graph explicitly. Notice that except of the vertices with
zero transitions (which can be compacted into one node, each), the graph allows a topological ordering.

Of course, the algorithm can easily be modified such that it returns not only the minimum weight but
also a description of the underlying minimum-weight path.

4 An Efficient Algorithm

A significant disadvantage of Algorithm 1 is that its time complexity depends on m, the value range of
the input function. As we’ll see in this section, this disadvantage can be avoided. Doing this, we present
an algorithm which has no such dependency. The most important observation comes from the following
problem.

[One-Segment-Approximation Problem)]

Given an z-monotone planar curve y = f(z) and two integers z; and z; (z; < z2), find two integers
y1 and yp such that the line segment connecting the two points (z1,y;1) and (z2,y2) minimizes the
squared-area difference:

P = [ 16 - (BTS2 +32)| o

' T2— Iy

Now, F(y1, y2) is minimized if y; and y» simultaneously satisfy the equation g—;';-(yl JY2) = g;:;(yl ,y2) = 0.

A straightforward calculation shows that the optimal point (37, y5) is given by

J = f?cz_—?—W[(h’ +z1)/zl2f(:c) dz — 3/: 2f(z) dx] and
. -2 T2 T2
Y5 = (2—2-_71)-2-[(221 +:r:2)/zl f(=z) dx—3-/z, zf(zx) dz]

If y; and y; are both integers, we are done. Otherwise, we need to find an integer point (91, y2) that
minimizes F(y1,y2). In order to compute this point, we present the following lemma that guarantees
that only a constant number of lattice points near the optimal point (y1,v5) are potential candidates
for the optimal integer point (1, §2)-

Lemma?2. An optimal solution of the One-Segment-Approzimating Problem can be computed in O(1)
time.

Proof. Consider the surface F defined by z = F(y1,y2). F allows a description

z= A} + iy +v3)+ By +Cy2+ D

with some constants A, B,C, D € IR. Thus, F forms an elliptic paraboloid in 3-space with the unique
minimum (y},y3). Therefore, all intersections of 7 with hyperplanes z = zo > F(y},y3) create ellipses
with center (y},¥3, 20). These ellipses originate from the standard ellipse by a clockwise rotation of 45
degrees — due to symmetry.

In order to find an integer point (§i, §2) that minimizes the function F(y1,y2), we consider the ellipse
defined by the set of points (y1,y2) with F(y1,32) < F(yi + 0.5, + 0.5). This set is guaranteed to
contain at least one and at most a constant number of integer points (y1,y2). In addition, the desired
optimal integer point (§1,#2) must be among them.

Now the new algorithm can easily be described. Let d;; denote the squared-area difference of an
optimal segment approximating the input curve in the interval z € [¢, j]. In addition, we let D; denote
the squared-area difference of an optimal polygonal chain in the interval z € [0, j]. Then, the so-called
minimum-weight path optimality conditions (see [1]) imply D; = min;=o,.__j-1 D; + d;;.

For each j € {1,...,n—1}, we store its predecessor i for which the equation above is fulfilled. Doing
this, we can explicitly reconstruct the minimum-weight path starting from D,_;.
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Thus, we obtain the following algorithm.

[Algorithm 2]
D[0] = 0;
forz=1ton—-1do
forz'=zton-1do
solve the One-Segment-Approximation Problem for z,2’ ~ y,y and d;;
apply a single-source shortest-path algorithm ~ D(1),...,D(n - 1).

It is easy to see that all d;;’s can be computed in O(n?) time. This can further be reduced to O(kn)
time if we bound the horizontal length of the approximating line segments. In particular, if k is some
constant, the total running time is linear. The running time of the single-source shortest-path algorithm
is linear in the number of edges ~ due to the special structure of the underlying graph.

Theorem 3. Algorithm 2 computes an optimally approzimating z-monotone polygonal chain in
O(N + kn) time and O(N + n) space.

//

Fig. 2. The optimal apﬁroximat,ing polygonal chain (k = 1).

5 Experimental Results

We have implemented the algorithms in C for planar curves using classical numerical integration
methods. Figure 2 displays the experimental results for an input planar curve defined by

y = 17sin(z/10.0 + 0.2) + 8sin(z/7 +0.3) + 4sin(z/2+0.5), 0<z <70

together with its optimally approximating z-monotone polygonal chain (for £ = 1). For most curves
and grids processed, a satisfying quality of approximation could be achieved for constant k.
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6 Remarks and Open Problems

Although our investigations focused on approximations by means of straight line segments, it is not hard
to extend the algorithm so that polygonal curves of fixed degree (e.g. parabolas) can also be incorporated
without increasing the computational complexity.

One major open problem arises when we drop the constraint that the approximating polygonal
chain must be z-monotone. In fact, it is not hard to construct an example where a polygonal chain that
minimizes the squared-area difference is not z-monotone. For that, consider the input curve defined
by the following polygonal chain ((0,0),(7/2,21/8),(7/2,0),(5,0)) which is best approximated by the
polygonal chain ((0,0), (4, 3),(3,0),(5,0)) which is not z-monotone. It is not clear how to solve the
problem without assuming monotonicity.
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