A Note on Approximations of Rectilinear Polygons*!
(Extended Abstract)

Jian Huang Anil Maheshwari Doron Nussbaum
Jorg-Ridiger Sack

School of Computer Science
Carleton University
Ottawa, Ontario, Canada K1S 5B6

1 Introduction

This paper studies a problem of computing optimal settings for multi-leaf collimators for
conformal therapy arising in medical physics [4]. The problem translates to finding an
area-optimal approximation of a rectilinear polygon P by a monotone rectilinear polygon Q
enclosing P and having (almost) all its horizontal edges of equal width w.

Throughout, all geometric objects (polygons, paths, boundaries, etc.) are implicitly as-
sumed to be rectilinear, i.e., each of their constituent segments is parallel to one of the
coordinate axes. Rectilinear objects arise naturally in image processing. A (rectilinear)
polygon @ is said to be monotone along the z-axis if any vertical line through @ intersects
@ in one connected component.

Let P be a simple (rectilinear) polygon on n-vertices. Let Q be a simple monotone
rectilinear polygon such that each of its horizontal edges, with the exception of four edges,
is of length w, where w > 0. The four exceptional edges are the leftmost and the rightmost
horizontal edges. We are interested in computing @ such that P is completely contained
inside @ and the difference between the areas of P and @ is minimized. We call such a
polygon @ an optimal approzimation polygon for P, or simply an optimal polygon.

In this paper we present O(n log n) time algorithms for computing such an optimal polygon
Q. When the input is given as a digitized image our algorithms run in optimal linear-
time. Our O(nlog n) algorithms have been developed and are stated so that optimal parallel
algorithms are easily derived.

Note that there could be several optimal polygons; we are interested in computing one
such optimal polygon. There have been several developments in the area of polygon approx-
imations [1, 3, 5, 7]. We do not know of any previous results on the problems considered
here.

In Section 2 we present algorithms for the case that P is a staircase polygon and in Section
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3 when P is a monotone polygon. In Section 4 we present algorithms for the case when P is
a simple rectilinear polygon.

2 Staircase Polygon

A polygon is said to be a staircase polygon if it is monotone along both coordinate axes (i.e.,
it is £ — y monotone). Let the given polygon P be a staircase polygon on n vertices. We
wish to compute an optimal approximation polygon, @, for P.

To compute an optimal Q, first divide the boundary of P into two chains - the top chain
and the bottom chain. Note that both chains are staircases since P is a staircase polygon.
We first discuss the case that the approximation of the two staircases is independent. Then
we discuss the situation that the vertical edges of Q for the top and the bottom chain are
aligned, i.e., the leftmost (rightmost) edges of the top and bottom chain have equal length.
This requirement arises in certain collimators. In this case, an optimal approximation of the
top or the bottom chain is not necessarily an optimal approximation for the entire polygon.

2.1 Independent Chains

In this case, we compute Q by computing its optimal top and bottom chain. The boundary of
Q consists of the top and bottom chain joined by two vertical edges. Since the computation
of the top and bottom chain of Q is analogous, here we describe the computation of only the
top chain of Q. To avoid the use of additional notation, we refer the top chain of P and Q
by P and Q itself, respectively. It is easy to see that for an optimal Q, each horizontal edge
of Q touches some horizontal edge of P. We prove the following crucial lemma.

Lemma 2.1 At least one of the vertical edges of an optimal Q touches a vertical edge of P,
where P is a staircase.

The above lemma suggests the following algorithm for computing an optimal Q. Place a
vertical edge of Q touching a vertical edge of P. Note that fixing one edge of @ uniquely
determines the chain Q, since each horizontal edge of Q is of width w and it touches some
horizontal edge of P. It is easy to see that it takes O(n) sequential time to compute @, once
we fix one of its vertical edge. Since the total number of possibilities for @ is the same as
the number of vertical edges of P, which is bounded by n, an optimal @ can be found in
O(n?) time. In the following we show that an optimal @ can be computed more efficiently.

Assuming that the leftmost vertical edge of P is touched by a vertical edge of @, compute
the chain Q. This takes O(n) time. For each vertical edge of P, compute the distance to
the closest vertical edge of Q which is to the left of P. If we assume that P has n vertical
edges, we get n distance values at the end of the above step. Sort these distance values in
an ascending order and let they be d; < d; < -+ < d,. Note that each d; < w and d; = 0.
Without loss of generality assume that y; is the length of the vertical edge of P for which
the distance to the closest vertical edge of Q is d;. The difference between the area of P and
Qis Ey = %, yi * d;. We call this the error of our approximation of P by Q. Our aim is to
reduce this error as much as possible. Move @ to the right by a distance d;. This results in



a vertical edge of @ touching the vertical edge of P whose height is y,. It is easy to see that
the new error is Ey = Y1, y; * (d; — d2) + y1(w — d3). This expression can alternatively be
written as By = C +w+*y; —do*Y, where C =Y y;*d; and Y = 3, yi. In general the
expression for E;, where the vertical edge of @ corresponding to the distance d; touches P is
E; = C+w*Y! ] yi—d;*Y. The partial sums Y/21 4:, Y and C can be computed in linear
time. Therefore all the E;’s can be computed in linear time. Compute the minimum E; out
of the n-possible values of E;’s. The desired @ is the one corresponding to the minimum E;.

Note that each step other than the sorting of d; values takes O(n) time.

2.2 Aligned Chains

When the approximating chains are aligned due to hardware constraints, approximations
for the top or bottom chain alone do not suffice to obtain an optimal approximation for the
entire polygon. We can however show that the above Lemma 2.1 still holds and that our
algorithm can be adapted to handle this situation.

We have developed and stated our sequential algorithms in such a way that they are easily
parallelizable. We summarize our result for the entire section in the following theorem.

Theorem 2.1 An optimal approzimation polygon (aligned or independent) for a staircase
polygon P on n-vertices can be found in O(nlogn) sequential time, and in O(log n) parallel
time with an optimal EREW PRAM algorithm.

Since the input polygon is usually obtained from an image where all coordinates are
integers in some bounded domain. Sorting the d;’ therefore takes linear time and we obtain:

Corollary 2.1 An optimal approzimation polygon (aligned or independent) for a staircase
polygon P on n-vertices derived from an image can be found in O(n) sequential time.

3 Monotone Polygon

In this section we consider the problem of computing an optimal approximation @ for a
simple monotone rectilinear polygon P on n vertices. Assume that P is monotone in the
direction of z-axis.

To compute @, we first divide the boundary of P into two chains - the top chain and the
bottom chain. Note that both chains are monotone since P is a monotone polygon. We first
discuss the case that the approximation of the two monotone chains is independent. Then
we discuss the situation that the vertical edges of @ for the top and the bottom chain are
aligned.

3.1 Independent Chains

We compute Q by computing its optimal top and bottom chain. Once we know the top and
bottom chain of Q, Q can be computed easily. Here we describe the computation of the top
chain of Q. Let us denote the top chain of @ (P) by Q (respectively, P).
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It is easy to see that for an optimal @, each horizontal edge of Q touches some horizontal
edge of P. Now we prove a lemma similar to Lemma 2.1. We need the following definitions.
P is comprised of staircases which are increasing and decreasing along y axis. Call a vertical
edge of P as increasing (decreasing) edge if it is on an increasing (respectively, decreasing)
staircase. Let y{ (yP) denote the height of an increasing (respectively, decreasing) edge of
P. Let I = Y y/ and D = T yP. Let dP (d!) denote the distance between the decreasing
(respectively, increasing) edge of P and the closest vertical edge of @ to its right (respectively,
left). Let d'/ = w — d!. Let dpp;;, = min{dP,d’; } for all possible choices of i.

Lemma 3.1 At least one of the vertical edges of an optimal Q touches a vertical edge of P,
where P is a monotone polygon.

PROOF We prove this by contradiction. Assume that no vertical edge of an optimal Q
touches a vertical edge of P. The total error E = Y yf x df + ¥ yP * dP. There are three
cases depending upon whether (i) I < D (ii) D < I or (iii) I=D.

Consider the case when I < D. Since I < D, we move @ in —z direction by d,;,. Due to
this movement the distance between the vertical edges of @ and the decreasing (increasing)
edges of P decreases (respectively, increases). Also a vertical edge of @ either touches a
decreasing (increasing) edge of P, depending upon whether dy ;) is dP (respectively, d?).
Consider the case when a vertical edge of @ touches a decreasing edge of P. Then the error
is B' = Yyl * (df + dppyp) + 2 yP x (dP — d ;). The above expression can be simplified
and it results in E' = E — dp;, * (D — I). Since D > I, E' < E. This case contradicts
the a.ssumptlon that Q is optlma.l Consider the case when a vertlca.l edge of @ touches an
increasing edge of P. Then the erroris E' = ¥ y! * (df +dpyjn ) + Z yP * (dD dimin) — W* Yk,
where y; is the height of the increasing edge of P corresponding to dp ;. On simplifying
this we get B/ = E — w * y + dppip * (D — I). It is easy to see that E’ < E, and therefore
the optimality of @ is contradicted.

The other two cases can be analyzed similarly and in each case we either obtain E' < E
contradicting the optimality of @ or E' = E where the approximation polygon associated
with E’ is also optimal. ]

Using this lemma and the algorithms developed in Section 2 we can develop our algo-
rithm for computing an optimal approximation Q of P. As before, we start with an initial
approximation and compute the d;’s and the initial error E; of our approximation. After
that we move @ in steps of dm.m and obtain succesive approximations. The expression for
the error in step j, where D > I,is E; = Ej_1+wx(y;2; —y]) — dpin * (D —I). In the above
expression yJ is the height of an increasing vertical edge of P that was not touched at the
j — 1st approximation but will be touched at ‘the jth approx:lmatlon and y] 1 1s the height
of a decreasing vertical edge of P that was touched at the j — 1st approximation. From this
iterative equation compute all possible E;’s. The optimal Q is the one corresponding to the
minimum value of E;. We omit the details here due to space limitation.

3.2 Aligned Chains

When the approximating chains are aligned due to hardware constraints, as before, approxi-
mations for top or bottom chain alone do not suffice to obtain an optimal approximation for
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the entire polygon. We can however show that the above Lemma 3.1 still holds and that our
algorithm can be adapted to handle this situation. We summarize our result for the entire
section in the following theorem.

Theorem 3.1 An optimal approzimation polygon (aligned or independent) for a monotone

polygon P on n-vertices can be found in O(nlogn) sequential time, and in O(log n) parallel
time with an optimal EREW PRAM algorithm.

Corollary 3.1 An optimal approzimation polygon (aligned or independent) for a monotone
polygon P on n-vertices derived from an image can be found in O(n) sequential time.

4 Simple Polygon

In this section we consider the problem of computing an optimal approximation @ for a
simple rectilinear polygon P on n vertices. We reduce this problem to that of computing an
approximation of simple monotone rectilinear polygon. We achieve the reduction as follows.

Compute the external boundary of P that is visible from a point at +ve and -ve infinity
along the y-axis. Let P’ be the polygon formed by the visibility boundary of P. It is known
that P’ is a simple rectilinear polygon and is monotone along z-axis. Furthermore P’ can
be computed in linear time sequentially [6] and in work-optimal parallel time [2]. Regions
of P' — P are called invisible pockets. We have the following lemma.

Lemma 4.1 An optimal approzimation polygon Q of P’ is also an optimal approrimation
polygon for P.

PROOF Any optimal polygon @ contains all invisible pockets. Therefore, an optimal Q
for P and P’ is the same. |

Since P’ is a simple monotone rectilinear polygon, we can use the results of the previous
section to compute an optimal Q. We summarize the results in the following theorem.

Theorem 4.1 An optimal approzimation polygon (aligned or independent) for a simple rec-
tilinear polygon P on n-vertices can be found in O(nlogn) sequential time, and in O(logn)
parallel time with a work-optimal EREW PRAM algorithm.

Corollary 4.1 An optimal approzimation polygon (aligned or independent) for a simple
rectilinear polygon P on n-vertices derived from an image can be found in O(n) sequential
time.

5 Conclusion

We have developed efficient and easy to implement algorithms for approximating rectilinear
polygons area-optimally. The problem arises in the context of conformal therapy when multi-
leaf collimators are used. This work is part of an on-going collaboration in which we study
a variety of related 2 and 3 dimensional problems arising in the context of medical physics.
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