Practical Methods for Set Operations on Polygons using Exact Arithmetic

Victor J. Milenkovic*
University of Miami
Department of Math and Computer Science

Abstract

We present here numerical and combinatorial methods
that permit the use of exact arithmetic in the construc-
tion of unions and intersection of polygonal regions. An
argument is given that, even in an exact arithmetic sys-
tem, rounding of coordinates is necessary. We also argue
that it is natural and useful to round to a nonuniform
grid, and we give methods for calculating the nearest
grid point. The main result is a shortest path rounding
algorithm that restores the combinatorial consistency of
a polygon after its vertices have been rounded. This al-
gorithm runs in linear time in the number of “near”
vertex-edge pairs. It is optimal in the sense that it
introduces the minimum combinatorial and geometric
changes. We know of no other bounded-error rounding
algorithm for nonuniform grids.

1 Introduction

There are many useful applications of set operations
on polygons: graphics, maps, CAD/CAM, etc. There
are efficient theoretical algorithms for performing the
set operations: union, intersection, complement, differ-
ence. These are all based on the construction of an
arrangement of line segments, where the line segments
are the edges of the polygons. It is (or should be) widely
known by now that one cannot naively implement these
algorithms. Numerical issues inevitably crop up, lim-
ited precision or round-off error, and these can ruin the

combinatorial correctness of the algorithm. Fortunately,

there are nice ways to deal with these issues, either us-
ing exact or rounded arithmetic. There are some open
questions, but these do not stand in the way of practical
algorithms.

This paper focuses on numerical and combinatorial
issues related to exact implementations. Usually, one
assumes that the input vertices have integer coordinates
and carries out all operations using rational arithmetic.
This paper gives arguments for the following observa-

*This research was funded by the Textile/Clothing Technology
Corporation from funds awarded to them by the Alfred P. Sloan
Foundation and by NSF grants CCR-91-157993 and CCR-90-
09272.

tions.
e Any practical modeling system for polygons must
eventually do a significant amount of rounding of
the coordinates of the vertices.

o It is often natural and useful to round each vertex
to the nearest point in a nonuniform grid.
Of course, one cannot naively round the vertices to new
locations because that might introduce intersections
among the edges of the polygon (other than at their
endpoints). To accomplish this rounding, we present a
shortest path combinatorial rounding algorithm. This
algorithm specializes the linear time for shortest path
in a convex polygon of Guibas et al [5]. The shortest
path rounding algorithm has the following properties.
¢ It introduces the minimum possible combinatorial
change in the polygon (assuming one does not allow
new vertex locations to be added).

o It introduces the minimum possible geometric
change in the polygon. The deviation of each
edge is bounded by a constant-the maximum grid
spacing.!

e It runs in linear time in the number of “near”
vertex-edge pairs. A vertex is “near” an edge if
it lies within the maximum grid spacing.

1.1 Related Work. Greene and Yao [4] presented
the first algorithm for rounding an arrangement of line
segments to a grid. For a grid with m bits of precision,
the algorithm introduces ©(m) extra vertices per edge.
We presented a rounded arithmetic (not exact) algo-
rithm for rounding a polygon to its set of vertices [10].
This algorithm introduced no new vertex location, but
it has possibly unbounded geometric error. In previous
work presented to this conference, we showed how to
round both set of line segments [11] and triangle in 3D
[13] to a nonuniform grid with minimum error. The line
segment algorithm introduces no new vertex locations,
but the 3D algorithm does. The line segment algorithm
uses a “shortest path” theorem which also appears in

Tntroducing the minimum geometric change in the absence of
combinatorial changes is NP-hard [8].

-55-

our work on rounded arithmetic algorithms [9, 14]. We
also show how use this rounding algorithm in combina-
tion with a technique to reduce the amount of precision
needed to construct an arrangement of lines or line seg-
ments (and round them to the integer grid) [12].

Hobby [6] presents a simple technique for rounding
an arrangement of line segments to the integer grid.
The basic idea is to “hook” each edge to every vertex
whose “rounding cell” intersects the edge. (A “rounding
cell” of a grid point is the set of points nearer to that
grid point than any other.) This technique introduces
no new vertices, runs in linear time, and introduces
error at most equal to the grid spacing. However, it
does not introduce the minimum possible combinatorial
or geometric changes, and it does not work on a
nonuniform grid.

There is no essential difference between the shortest
path rounding technique described here and the one
given in [11] and [12]. However, neither of those justified
the use of nonuniform grids. Furthermore, neither gave
the specialized version of Guibas et als shortest path
algorithm that is required for this application. People
seem to have gotten the impression that this is not a
practical rounding technique. This paper is an effort
to set the record straight. We have been using the
technique described in this paper in an exact polygon
modeling system since 1992. We actually were aware
of Hobby’s “rounding cell” technique when we were
implementing the modeling system. (We mentioned it
briefly as a cheap alternative at the Canadian conference
in 1989.) In fact, in 1992 we ran some comparisons
with the shortest path rounding. Rounding is such
a small part of the cost of the algorithm that there
was no discernible difference in running time. The
difference in combinatorial structure was noticeable
but not drastic. In a test with very many rotations,
unions, and intersection, the rounding cell version had
just no more than 10 to 20 percent more vertices on

its boundary than the optimal shortest path rounding

version. Since the difference in cost is insignificant, we
have always used shortest path rounding (which also
works for nonuniform grids).

1.2 Outline. Section 2 reviews the basics of perform-
ing set operations on polygonal regions. Section 3 gives
the reasons why even an exact arithmetic system must
eventually round the coordinates of its vertices. Sec-
tion 4 explains why it is natural and useful to round to
a nonuniform grid, and it gives methods for calculat-
ing the nearest grid point. Finally, Section 5 gives the
actual shortest path rounding algorithm.

2 Set Operations Polygons: Basic

Algorithms

on

In order to perform set operations on polygons, it is first
necessary to choose a representation. All that is really
necessary is a) a set of vertices and b) a set of edges.
Each vertex is a geometric point (z,y). Each edge is a
pair of vertices (either pointers or indices into a vertex
table). It is often useful to order the vertices of an edge
ab so that the inside of a polygon is “to the left”. In
other words, if a dog had his tail at a and his head at b,
then he would see the inside of the polygon to his left.

An exact representation would use integer or ratio-
nal coordinates for the vertices. A floating point rep-
resentation would use floating point coordinates. Actu-
ally, one often uses the “float” or “double” data type (in
C) or the equivalent in other languages to represent inte-
ger coordinates. First of all, the “double” or “extended”
data type offers more precision than the standard 32-bit
integer data type. Also, on most advanced computers,
double precision floating point computations are equal
in speed or faster than integer computations.

A nice compromise is homogeneous coordinates.
The homogeneous coordinate (z, y, w) represents the ge-
ometric point (z/w,y/w). If z,y, w are integers, than
the homogeneous representation is equivalent to an ex-
act rational representation with the restriction that the
two coordinates have the same common denominator w.

Given polygons A and B, taking the union or
intersection of their interiors is just slightly more work
than computing the arrangement of their line segment
edges. There are many more recent algorithms for line
arrangements, but the Bentley-Ottmann algorithm [1]
is still very practical.

Running a line segment arrangement algorithm has
the effect of computing all the intersections of edges of
A with edges of B. Also, if a vertex of A is identical to a
vertex of B or if it lies on an edge of B, the arrangement
algorithm will also detect this. We like to say that A and
B have been accommodated to each other: each edge has
been appropriately subdivided by intersection with the
edges and vertices of the other polygon. It is not difficult
to modify the line segment arrangement algorithm to tag
each edge ab of A as one of the following: a) interior to
B; b) exterior to B; c) identical to a edge cd of B with
the same orientation (a = ¢ and b = d); d) identical to
a edge cd of B with the opposite orientation (a = d and
b = c). Each edge cd of B is similarly tagged.

Now suppose we want to create a polygon C whose
interior is the intersection of the interiors of A and B.
(This is called the regularized intersection of A and B)
We add to C a) a copy of each edge of A that is interior
to B; b) a copy of each edge of B that is interior to A;
c) a single copy of each pair of edges from A and B with

-56-

the same orientation. To create a polygon D which is
the union of A and B (plus their interiors), we add to
D a) a copy of each edge of A that is ezterior to B; b) a
copy of each edge of B that is ezterior to A, c) a single
copy of each pair of edges from A and B with the same
orientation.

2.1 Required Numerical Primitives. A number
of numerical primitives are required to implement any
line segment arrangement algorithm. We describe here
how to implement these primitives for homogeneous
coordinates.

First of all, it is helpful to always have w be positive.
If it is not for a particular vertex (z,y, w), replace this
vertex by (—z, -y, —w).

Primitive 1: Comparing x-coordinates. Vertex
a has lesser x-coordinate than vertex b if and only if
azby — aybs < 0.

Primitive 2: Comparing a vertex to a segment.
Vertex a lies on the left side of line ed if and only if
[a,c,d] > 0, where

a; ay Gy
[a,e,d]=] cz ¢y cu
d; dy dy

Recall that “left” is from the point of a view of a dog
with his tail at ¢ and his head at d.

Primitive 3: In homogeneous coordinates, the
intersection point of lines ab and cd is

[b’ ¢ d]a - [a’) d.lb)

where scalar multiplication and vector addition (sub-
traction) is carried out in the usual fashion. This inter-
section point lies on both edges ab and cd if and only
if Primitive 2 tells indicates that a and b are opposite
sides of ¢d and that ¢ and d are on opposite sides of
ab. Computing the intersection requires three times the
input precision if ay, = by = --- = fy = 1. In general,
it requires four times the input precision.

Primitive 4: The intersection of lines ab and cd
lies to the left of edge ef if and only if

[aa e)f][bxc)d] - [a’c)d][b’e’ f] > 0.

Evaluating this expression requires four times the input
precision if @y = by = --- = fu = 1. In general, it
requires six times the input precision.

2.2 Other Issues. In the presence of degeneracies,
the primitives take on zero values in the expected fash-
ion. For instance, if a lies on line cd, then [a,c,d] = 0.
Degeneracies can be taken care of by careful program-
ming of special cases or by the use of symbolic pertur-
bation methods.

3 The Need for Rounding

In the context of this paper, rounding takes on two
forms: combinatorial and numerical. Combinatorial
rounding modifies the set of edges, but not the positions
of the vertices. Numerical rounding alters the positions
of the vertices. Usually numerical rounding creates
the need for some combinatorial rounding in order to
maintain a consistent (non-self-intersecting) polygon.
Just as there are two types of rounding, there are two
reasons for rounding: combinatorial and numerical. We
consider here examples of these types of reasons.

3.1 Combinatorial Reasons for Rounding. In
a drawing system or any system that models physical
reality, it is often useful that vertices have gravity.
Hence, if vertex a is close enough to edge cd, it may be
necessary to split cd into ca and ad. If this is not done,
it becomes very difficult to model a contact between
vertex a of polygon A and edge cd of polygon B. If the
coordinates are all integers and if ay, = ¢y = dy = 1,
then a is very unlikely to lie on cd. In fact, if ¢; — ds
and ¢, — dy are coprime, then a cannot lie on cd unless
a=cora=d.

Suppose we wish to put polygon A in simultaneous
contact with polygons B and C. This can be done by
exact rational translation. However, each coordinate
of the translated copy of A will require a representation
with about three times the input precision. For practical
purposes, it is much less expensive to move A within
on unit of B and C and then “attach” the appropriate
edges of B and C to A.

Please note that replacing cd by ca and ad might
cause ca or ad to “run into” other vertices. In other
words, some vertex e lies on one side of cd but the other
side of ca. In that case, one must apply the rounding
algorithm of Section 5.

3.2 Numerical Reasons for Rounding. One
might think that intersection an arbitrary number of
polygons might cause the precision requirements to grow
without bound. Actually, this is not the case. Using
the primitives of Section 2.1, one can compute the
combinatorial structure of the intersection using only a
four-fold increase in precision. Representing the vertices
requires a six-fold increase. The trick is to use the
“original” endpoints of an edge where ever possible.
For example, if ¢'d’ is a subedge of cd, then instead
of computing the sign of [a, ¢/, d'], compute the sign of
[a,c,d].

Unfortunately, some common operations spoil this
scheme. For example, if we compute the convex hull of
a derived polygon, then the convex hull might contain
new edges joining derived vertices. These new edges

-57-

are not part of some “original” edge. Triangulating a
polygon (and extracting the triangles as new polygons)
also has the same effect. Many applications use either
convex hulls or triangulations.

Canny et al [2] describe a scheme for carrying out
exact rotations of points in two dimensions. Only a
dense set of rotation matrices have rational coefficients,
and therefore it is necessary to approximate the rotation
angle. Under their scheme, an approximate rotation
by 8 with m bits of accuracy 6(1 & 2=™) increases the
precision of the homogeneous coordinates of A by m
bits.

We conjecture that any polygon modeling system
that provides set operations, Euclidean transformations,
scaling, convex hulls, and triangulation cannot avoid an
ezponential growth in the number of bits of precision as
a function of the number of operations.

Thus, truly useful and practical exact arithmetic
modeling systems require that coordinates be rounded
to lower precision. If vertex a is rounded to new position
a’, then edge a’b might “run into” some other vertex c.
In other words, ¢ lies on opposite sides of ab and a'b.
This is another instance in which it is necessary to apply
the shortest path rounding algorithm of Section 5.

4 Nonuniform Grids: Reasons and Methods

A uniform gridis the cartesian product of two uniformly
spaced discrete sets, such as the integers. Thus the
integer grid is a uniform grid. ‘A nonuniform grid is
a cartesian product of nonuniformly spaced discrete
sets. On any modern computer, the set of representable
floating point numbers is a nonuniform set of rational
numbers. The set decreases in density with distance
from the origin. Thus the set of floating point geometric
points is a nonuniform grid.

The integer grid appears at first glance to be the
natural choice for exact arithmetic. We will argue
that it is more natural to use a nonuniform set of
rational numbers for the coordinates. Secondly, we will
give algorithms based on continued fractions or basis
reduction to calculate these coordinates.

4.1 Nonuniform Grids: Reasons. Floating point
is not synonymous with numerical rounding. There is no
reason a modeling system cannot use an ezact floating
point representation. The next section summarizes how
this can be done. Computer designers chose floating
point as a numerical representation for a number of
very important and practical reasons. Chief among
these is that relative (rather than absolute) accuracy
is independent of scale. Many of these reasons also hold
for polygon modeling and its applications. Therefore,
one very well might choose a nonuniform floating point

representation for polygons.

Suppose we do not use a floating point representa-
tion but instead use a uniform integer grid for the input
vertices. As we have seen, intersection vertices have ra-
tional coordinates. Eventually, as we have argued, it is
necessary to numerically round some of the rational val-
ues back to integers. However, it is not natural to round
all values back to integers at the same time. Perhaps it
would make more sense to round only those which have
really large numerators and denominators. Rounding
some coordinates to integers and leaving others alone is
mathematically equivalent to rounding to a nonuniform
lattice. (Since the set of coordinates after rounding is
nonuniform, it does not matter how they got that way.)

Finally, even if one rounds all the coordinates simul-
taneously, it might not make sense to round everything
back to integers. Perhaps we might represent each co-
ordinate as a fraction p/q, where p and ¢ are m-bit inte-
gers. This set of coordinates densely, but not uniformly,
covers the set of values in the range —1 to 1. Similarly,
we might use (the very useful) homogeneous coordinates
(z,y,w), where z, y, and w are rounded to m bits. This
is also yields nonuniform grid of representable geometric
points.

4.2 Nonuniform Grids: Methods. Fortune and
Van Wyk, in their work on the LN system [3], give a
method for performing infinite precision floating point
arithmetic. The representation uses lists of floating
point numbers whose (implicit) sum is the number being
represented. FEach number in the list has a different
exponent, and it “covers” a different range of the bits
of the represented number.

Canny at al, in their work on rational rotation ma-
trices in two dimensions [2], discuss the use of continued
fractions for generating good rational approximations
to real numbers. This work can also be applied to the
problem of finding a lower precision representation for a
fraction p/q. It is possible to find p’/q’ which approxi-
mates p/q to m bits of accuracy such that p’ and ¢’ each
have about m/2 bits of precision.

This author, in his work on rational rotation ma-
trices in three dimensions [15], discusses the use of ba-
sis reduction to find good rational approximations to
unit quaternions. Theoretical work of Lovasz [7] im-
plies that basis reduction can generate good rational
approximations p1/q, p2/q, p3/q to real numbers aj,
0, and as. For an approximation with m bits of accu-
racy, pi, Pz, P3,q must have about 0.75m bits of preci-
sion. This work can be directly applied to numerically
rounding homogeneous coordinates. Lovasz et al im-
plies the following result about basis reduction. Given
(z,y, w), it is possible to find (z', y', w') which approxi-

-58-

mates (z,y, w) with m bits of accuracy such that z’, ¢/,
w’ have about (2/3)m bits each, for a total of about 2m
bits.

5 Rounding to Nonuniform Grids

This section presents shortest path rounding, a method
for rounding the vertices of a polygon to a nonuniform
grid. This method is optimal from the point of view
of introducing the minimum amount of numerical error
and the minimum change to the combinatorial structure
of the polygon.

We first present the mathematical definition of the
of the shortest path rounding, and prove that it works
and has the optimal properties claimed above. Next
we give a specialization of an algorithm by Guibas
et al for calculating the shortest path in a simple
polygon. The specialization calculates the shortest path
rounding. Finally we discuss some practical issues in
its implementation. The statement of this rounding
method appeared in a short abstract form [11]. Versions
of the shortest path theorem appears in a number of
contexts related to the use of floating point arithmetic
[9, 12, 14]. The result by Guibas et al was cited, but
the specialized version for shortest path rounding has
not appeared elsewhere.

5.1 Shortest Path Rounding. Suppose we start
with a numerically consistent polygon. For the given
numerical values of its coordinates, no two edges in-
tersect except at their endpoints. Next we round the
vertices to a nonuniform grid. If a is a vertex, let
p(a) = (p(azs), p(ay)) be the rounding function.

After applying p, we might find that vertex p(c) is
on the right of edge p(a)p(b), even though c is on the
left of ab. Clearly this is a combinatorial inconsistency.
Shortest path rounding replaces the single edge p(a)p(b)
by the shortest path that either passes through other
rounded vertices or has these vertices on the correctside.
Think of it as if a and b are connected by a tight rubber
band. As a and b move to p(a) and p(b) and as some
other vertex ¢ moves to p(c), ¢ presses up against and
deflects the rubber band, but it does not pass through
it.

If two new edges of the rounded polygon become
identical they cancel each other in pairs.

Theorem If p is monotonic (a; < by implies
p(az) < p(bz)), the shortest path rounding is a numeri-
cally and combinatorially consistent polygon.

Furthermore, since the shortest path obviously take
the fewest turns and deviates the smallest possible
amount from the straight line. The deviation is bounded
by the maximum deviation of a rounded vertex-the
maximum grid spacing.

5.2 Algorithm. Here is the algorithm for the short-
est path rounding. The running time is linear in the
number of vertices.

We assume that a and b are the rounded locations
of the endpoints for the edge. Vertices p;,pa, ..., pn are
the rounded locations of vertices that lie near the edge.
They are ordered by increasing value of p; - (b —a) (“”
is the dot product). We do not pay for sorting the p;,
since the arrangement algorithm will generate them in
sorted order.

When the algorithm makes a combinatorial test, p;
lies left of ab, it is referring to the original combinatorial
structure of the unrounded polygon. Numerical tests:
[a,b,pi] > 0 are carried out with the rounded values of
the coordinates.

In the following, Path, Left, and Right are double-
ended stacks. PushHead, PopHead, PushTail, and
PopTail do the obvious things. Path.Head[0] is the
current “head” of the stack. Path.Head[1] is the element
one away from the “head” end of the stack. After
FindShortest is executed, Path contains the desired
shortest path.

AddLeft (p, Path, Left, Right)
while Left.Size > 1
a — Left.Head[1]
b — Left.Head[0]
if [a,b,p) <0
Left. PopHead
else
break
Left.PushHead (p)

if Left.Size = 2 and Right.Size > 1
while Right.Size > 1
a — Right.Tail[0]
b — Right.Tail[1]
if [a,b,p] <0
Right.PopTail
Left.PopTail
Left.PushTail (Right.Tail[0])
Path.PushHead (Right.Tail[0])
else
break
Right.PushHead (p)

AddRight (p, Path, Right, Left) is analogous to
“AddLeft” with the roles of Right and Left switched.

-59-

FindShortest (a, b, p1, p2, ..
Path.PushHead(a)
Left.PushHead(a)
Right.PushHead(a)

°y pﬂ)

fori—1ton
if p; is left
AddLeft (p;, Path, Left, Right)
else
AddRight (p;, Path, Left, Right)
AddLeft (b)
AddRight (b)
return Path

5.3 Practical Issues. First of all, for any edge ab,
it is only necessary to consider vertices ¢ which lie very
near to ab. The threshold distance is the maximum
rounding amount (the maximum grid spacing in the
vicinity), which is usually very small. In general, only
a very few edges will have any vertices that near to
it. Assuming we can quickly identify these edges, the
shortest path rounding will essentially run at the cost
of changing all the vertex locations.

Basically, whenever we create a new polygon via
the sweepline algorithm of Section 2, it is easy to keep
track of which vertices are very near other edges. This
does not appreciably add to the cost of the line segment
arrangement algorithm. Each edge structure needs a
pointer to a linked list of nearby vertices. Nearby is
defined to be a small multiple of the maximum rounding
amount. That is all that needs to be done.

There is a slight risk that rounding homogeneous co-
ordinates will not be monotonic. A quick sweep through
the set of nearby vertices for an edge can determine
any nonmonotonicities. Such vertices should be recom-
puted using the (safer) rounding of rational coordinates.
The continued fraction method is guaranteed to gener-
ate monotonic roundings. It is simple to convert ratio-
nal coordinates to a homogeneous coordinates by clear-
ing the fractions. Unfortunately, increases the required
precision from 2m to 3m; but this is not much and it
should not happen too often.

6 Results and Future Work

In 1992, we implemented an exact arithmetic system for
performing set operations on polygonal regions. This
system uses shortest path rounding. It is really only a
prototype, but we have been using it for industrial ap-
plication problems. This summer we hope to implement
a more “final” improved version.

The current system uses double precision numbers
to store integers. This gives something like 50 bits of
precision. Since computing vertex locations causes a

four-fold increase in precision, the system can handle
integer inputs only in the range —2048 to 2048. This 1s
good enough for our applications, but we really need to
use a technique like Fortune and Van Wyk’s LN system
to boost the precision we can handle. The system
is uncrashable (baring undiscovered bugs in the exact
algorithm!).

If anyone wants to experiment with the system,
please contact me at vjm@cs.miami.edu.

References

[1] Jon L. Bentley and Thomas Ottmann. Algorithms for Report-
ing and Counting Geometric Intersections. IEEE Transac-
tions on Computing, C28 (1979), pp. 643-647.

[2] J. Canny, B. Donald, EK. Ressler. A Rational Rotation
Method for Robust Geometric Algorithms. Proceedings of
the Eighth Symposium on Computational Geometry, ACM,
pages 251-160, June 1992.

[3] S. Fortune, C. Van Wyk. “Efficient Exact Arithmetic for
Computational Geometry.” Proceedings of the Symposium on
Computational Geometry, ACM, 1993.

[4] Daniel H. Greene and F. Frances Yao. Finite-resolution compu-
tational geometry. In 27th Annual Symposium on the Foun-
dations of Computer Science, pages 143-152, IEEE, October
1986.

[5] L. J. Guibas and J. Hershberger and D. Leven and M. Sharir
and R. E. Tarjan. “Linear-time algorithms for visibility and
shortest path problems inside triangulated simple polygons”.
Algorithmica, vol. 2, 1987, pp. 209-233.

[6] John Hobby. “Practical Segment Intersection with Finite
Precision Arithmetic”. Manuscript, AT&T Bell Labs, October
1993.

[7] L. Lovasz. An Algorithmic Theory of Numbers, Graphs and
Convezity, CBMS-NSF Regional Conference Series in Applied
Mathematics, Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1986.

[8] V. J. Milenkovic and L. R. Nackman. “Finding Compact Co-

ordinate Representations for Polygons and Polyhedra.” IBM

Journal of Research and Development, vol. 34, no. 35, Septem-

ber 1990, pp. 753-769.

Victor J. Milenkovic. Verifiable Implementations of Geometric

Algorithms using Finite Precision Arithmetic. Technical

Report CMU-CS-88-168, Department of Computer Science,

Carnegie Mellon University, Pittsburgh, PA 15213, July 1988.

Victor Milenkovic. Verifiable implementations of geometric al-

gorithms using finite precision arithmetic. Artificial Intelli-

gence, 37:377-401, 1988.

“Rounding Face Lattices in the Plane.” First Canadian

Conference on Computational Geometry, Montreal, Quebec,

Canada, August 21-25, 1989 (abstract).

Victor Milenkovic. Double Precision Geometry: A General

Technique for Calculating Line and Segment Intersections Using

Rounded Arithmetic, 30th Annual Symposium on the Foun-

dations of Computer Science, IEEE, pages 500-506, October

1989.

“Rounding Face Lattices in d Dimensions.” Proceedings of the

Second Canadian Conference on Computational Geometry,

Jorge Urrutia, Ed., University of Ottawa, Ontario, August 6-10,

1990, pp. 40—-45.

Milenkovic, Victor. Robust polygon modelling.

Aided Design, 25(9):546-566, September 1993.

V. J. Milenkovic and V. Milenkovic. “Rational Orthogonal

Approximations to Orthogonal Matrices.” Accepted with revi-

sions for a special issue of Computational Geometry: Theory

and Applications, October 1993.

)

—

[10]

11

[12]

[13]

[14] Computer-

[15]

-60 -

