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1 Introduction

For a number of years, we have worked on a project
on finding tight packings of polygonal objects in two
dimensions. Such packings have significant applica-
tions in the clothing industry and other industries where
shapes are cut from stock material: sheet metal, leather
hides, etc. We successfully applied computational ge-
ometry and mathematical programming to the task of
compaction: quickly finding a tight packings (local en-
ergy minima under gravity or other forces). Several re-
searches in fluid and solid mechanics have asked whether
compaction can be generalized to sphere packings. Ap-
parently the centers of spheres packed in a polyhedron
might be a good starting point for the vertices of a mesh
or tetrahedralization. Others have taken note that the
compaction algorithm often generates an entertaining
motion of the polygons. It occurred to us that com-
paction algorithm might be useful as an animation tool.

To generate realistic animation, recent work in
computer graphics has focused on methods to simulate
the motion of objects under the laws of physics. Suppose
one wanted to create an animated dancer. Instead of
laboriously choosing a sequence of poses, one creates
a model of a dancer with masses, joints, and forces,
and lets the laws of physics do the dancing. The laws
of physics are well understood (for this domain), and
current computers can simulate physics for these types
of models in near to real time. The main difficulty of

this approach is choosing a set of forces (parameters.

for the model) that allow the dancer to dance and not
fall on its face. However, there are other domains for
which the forces are easily determined but the physics
is very difficult to simulate. Consider the problems of
animating the sand in an hourglass or the sand on the
beach as someone sets foot on it. Consider even the
problem of animating the molecules of fluid in a lava
lamp. These models involve many highly interacting
three-dimensional objects. For even a modest number
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of grains of sand or molecules, the simulation outstrips
our computational resources.’

This paper proposes a simplified position-based
physics that allows us to rapidly generate plausible mo-
tions for sets of many highly interacting objects. These
motions “come to rest” in locally optimal packings of
the objects. We present an efficient and numerically
stable algorithm for carrying out position-based physics
on spheres and nonrotating polyhedra. This work intro-
duces linear programming as a useful tool for graphics
animation and packing in three dimensions. As its name
implies, position-based physics does not contain a no-
tion of velocity, and thus it is not suitable for simulating
the motion of free-flying, unencumbered objects. How-
ever, it generates realistic motions of “crowded” sets
of objects in confined spaces, and it does so at least
two orders of magnitude faster than other techniques
for simulating the physical motions of objects.

Section 2 compares position-based physics to other
methods of physical simulation such as velocity-based
contact force methods. It describes two problems
which severely slow down velocity-based methods: local
and global “rattling.” Section 3 gives an algorithm
that simulates position-based physics on set of spheres
and applies it to two animation tasks: beads settling
under gravity in a box and a heavy bead settling
into lighter beads. Section 4 shows how to handle
other potential functions such as attraction among the
beads. This technique is applied to the animation of a
“pearl” dropping through “shampoo” and a “lavalamp”
containing a “cloud” of mutually attracting beads rising
through a “fluid”. Both the “shampoo” and “fluid” are
sets of beads held in place by certain potential functions.
Section 5 gives the algorithm for interacting spheres
with nonrotating polyhedra and applies it to two other
tasks: a foot stepping into beads and beads falling in
an hourglass.

Section 6 presents results and running times. At
present, more implementations are required to deter-

TAlso, numerical instability, which is a minor problem for the
simulation of robots or dancers, becomes a serious impediment
when the number of interacting objects rises into the hundreds,
thousands, or beyond.
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mine if the motions “look real” or if more modifications
of the algorithms are required. At the appropriate point,
we will separate out the graphics parts of this work and
present it to the graphics community. At present, it
is our hope to make the geometry (and perhaps mesh-
ing/triangulation) community aware of the possibility
of fast sphere packing.

2 Techniques for Physical Simulation

We categorize physical simulation techniques as
acceleration-based, velocity-based, or position-based.
Acceleration-based methods come closest to simulating
true physics, and they are the most expensive to carry
out in computation. Velocity-based methods are farther
divorced from “reality” but are faster. Position-based
methods are the farthest from reality and the fastest.

Spring model methods (also called penalty methods)
[8] [9] are typical acceleration-based methods. They al-
low the objects to overlap, and for each pair of overlap-
ping objects, there is a repulsive force proportional to
the amount of overlap. The resulting repulsive forces
cause the objects to accelerate. Numerical integration
converts acceleration to velocity and then to position.
These methods require many small time steps when the
acceleration is high. The large number of steps results
in a high computational cost. Also, it is often difficult
to determine the correct step size. Incorrect discretiza-
tion of time can cause unusual numerical results such as
nonconservation of energy or momentum.

Contact force model methods (also called analytical
methods) [1] [2] are examples of velocity-based methods.
Rigid bodies are allowed to contact but not overlap.
Given the current set of contacts, the method computes
a set of consistent velocities such that no two contacting
objects penetrate each other. The objects move with
these velocities until a new contact occurs. The velocity-
based method is much more stable and faster than the
acceleration-based method for two reasons: 1) it can
exactly compute the time of the next contact, and 2) the
resulting time-step tends to be much larger than that
needed to accurately carry out numerical integration.
Unfortunately, the velocity-based method is subject to
two problems which cause small time steps and thus
high computational cost. Local rattle occurs when one
object bounces between two others (such as the rapid
bouncing that occurs when you bring a paddle down on
a bouncing ping-pong ball). Global rattle occurs when
there are many interacting objects. Since there are so
many, it is inevitable that some pair will make contact
in a short amount of time. This new contact forces us
to recalculate the velocities.

Just as a velocity-based method eliminates accel-
erations, a position-based method eliminates velocities

(and also time, momentum, and kinetic energy). The
model only needs to have a potential energy function.
Under position-based physics, the objects are allowed to
simultaneously “jump” from their current configuration
(positions) to a lower energy configuration. The motion
consists of a sequence of jumps. The physics has two
rules: 1) each jump must be maximal in a sense defined
in Section 3.1, and 2) the jump configuration must be
“visible” from the previous configuration in the config-
uration space. Rule 1 ensures that the objects rapidly
reach a local minimum energy configuration. Rule 2 im-
plies that two objects cannot appear to jump “through”
each other and thus ensures a realistic looking anima-
tion. The jump calculation takes into account pairs of
objects which are near each other. Thus, an object will
not bounce between two other objects, and there is no
local “rattle”. Position-based physics also avoids global
“rattle” since each object jumps a maximal amount.
Even if two objects in the model require only a small
jump to come into contact, this does not prevent other
objects in the model from making larger jumps if they
are able to.

In his Ph.D. thesis [4] (see also [7, 6]), Li introduced
the concept of position-based modeling. His application
is compaction: finding tight packings of polygonal ob-
jects in the plane. For this application, the motion of
the objects is immaterial, and only the final configura-
tion matters. He attempted to carry out compaction
using a velocity-based method similar to Baraff’s (1,
but he found this to be very expensive computationally
and also numerically unstable. Li and this author for-
mulated a position-based model and algorithm. This
algorithm uses Minkowski sums [10, 3] and a locality
heuristic to calculate a maximum convex region of the
configuration space visible to the current configuration.
Linear programming finds the lowest energy configura-
tion in this region, and the model jumps to this config-
uration. According to his experiments, the method typ-
ically reaches a local energy minimum in five or fewer
jumps even for a layout of more than 100 polygons with
up to 75 vertices per polygon. For the examples which
were simple enough to carry out the velocity-based min-
imization, the position-based method was at least two
orders of magnitude faster.

The algorithms presented in this paper also use
position-based physics. Unlike the two dimensional
compaction algorithm, they do not require explicit
calculation of the Minkowski sum. They also do not use
the local heuristic which requires certain assumptions
about the objects. The new algorithms generalize the
set of objects from two-dimensional polygons to three-
dimensional spheres and polyhedra.
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3 Position-Based Physics Applied to Spheres

This section gives a formal definition of position-based
physics. It then provides an algorithm for simulating
the motion of spheres in an axis-parallel box under the
influence of gravity. The spheres can have arbitrary
masses and radii. This algorithm can thus simulate
a large, massive sphere settling into a bed of lighter,
smaller spheres.

3.1 Definition of Position-Based Physics. Under
position-based physics, motion consists of a sequence
of jumps in configuration space. As per typical usage,
configuration space denotes the concatenation of the
degrees of freedom of the model. For a set of n
spheres, the configuration space has 3n dimensions.
The free space is the set of configurations for which
no pair of objects overlap. These free configurations
are also referred to as valid or nonoverlapping. Free
configuration ¢’ is visible from free configuration c if the
entire line segment cc’ lies inside the free space.

The boundary of the free space consists of flat
and/or curved (hyper-)surfaces in the 3n-dimensional
configuration space. A tangent plane for the free space
is either the extension of a flat surface or a (standard)
tangent plane to a curved surface. A region in the free
space is mazimal if it is a) convex and b) bounded by
tangent planes.

A region R about a free configuration c¢ is mazimal
with respect to ¢ if 1) R is maximal and 2) no tangent
plane bounding R passes through ¢ unless ¢ actually
lies on the surface to which that plane is tangent. By
definition, position-based physics allows a jump from
the current configuration ¢ to the minimum energy
configuration in some region R which is maximal with
respect to c¢. Condition (1) implies that the jump is
as large as possible. Condition (2) assures that the
jumping does not stop until the system reaches a local
energy minimum.

3.2 Algorithm for Sets of Spheres. This section
gives the algorithm for simulating the motion of a
set of spheres in an axis-parallel box in a constant
gravitational field.

The box is expressed simply,

Zmin £ T £ Tmax; Ymin L Y < Ymax; Zmin < 2 < Zmax.

For i = 1,2,3...,n, let sphere S; have position p; =
(zi, ¥i, 2i), radius r;, and mass m;. A configuration
¢ = (p1,p2,---,Pn), is a concatenation of sphere coordi-
nates.

There are two sets of linear constraints on the
configuration. The first,

Zmin + 7 £ Zi < Tmax — T, Ymin + 7 < ¥i < Ymax — T4,

(3.1)

for i = 1,2,...,n, keeps the spheres in the box. To
define the second set, first let pf*" and p{"" be the
current positions of S; and Sj. Define nf}" = (pj*" —
pf*)/|p§*" — pf*"| to be the unit vector pointing from S;
to Sj. The second set of constraints,

Zmin + 7i < 2 £ Zmax — T,

(3.2) (pj - pi) 'nf;" >ri+rj, for1<i<j<n,
prevents the spheres from overlapping.

It can be proved that the set of configurations satis-
fying the constraints of Equations 3.1 and 3.2 is a max-

imal region with respect to the current configuration
cur cur cur)

cur
c —<p1 )p2 y""pn
Under the influence of gravity, the potential energy

function is
n
E(e) = Z m;z;.
i=1

All bounds and constraints are linear, and they are de-
vised in such a way to allow us to apply linear program-
ming. We use a commercial linear programming package
CPLEX? to solve for the configuration that minimizes
the potential energy within the maximal region. This
yields a single “jump”, and the algorithm iterates these
jumps to yield a motion.

3.3 Possible Applications. The following are two
examples of tasks that can be solved using gravitaional
potential functions: 1) a set of beads settling in a box
under the influence of gravity, 2) a heavy bead sinking
into a bed of lighter beads.

4 Nongravitational Potential Functions

The simulated beads act much like a real box of beads
(as well they should) and do not allow even a heavy
object to sink into them very far. To simulate a pearl
falling through a bottle of shampoo or a lava lamp,
we need non-gravitational potential functions. These
forces do not act on the pearl but on the beads through
which the pearl is falling. This section describes these
functions and how they are used to animate these
applications.

4.1 Attraction between Spheres. To define an
attractive force between spheres, we must first define
the distance between spheres in a way that can be
represented in a linear program. In the following,
1 < i < j < n, where n is the number of spheres. Let
S; and S; be spheres which are to attract each other.

2ZCPLEX Optimization Inc. Suite 279. 930 Tahoe Boulevard,
Building 802. Incline Village, Nevada 89451-9436.
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Create a new variable d;; which represents an
approximation to the distance from p; to p;. The value
of d;; will always be a lower bound on the Euclidean
distance. Select a set U of unit vectors. The set U
should at least include n{}'" (the unit vector from p; to
p;j) and the six axis-parallel vectors (+1,0,0), (0, £1, 0),
(0,0,=1). Apply the following constraints on p;, p;, and
dy;:
(4.3)

Adding more vectors to U makes d;; a better approx-
imation to the Euclidean distance |p; — p;|. However,
the given U is sufficient for realistic motion, and the
presence of n{j'" ensures correct convergence.

For a constant force f;; of attraction between S; and
S; (independent of distance), we can add the term f;;d;;
to the potential function for the model. Often, however,
one desires a force which “dies off” with distance, such
as the inverse-square law. The corresponding potential
function —f;;/d;; is nonlinear. In this case, we use a
linear approximation,

u-(pj —pi) < dij, foruel.

1 d;; — dSYUT
Eappl‘ox(d:'j) = ﬁj ("a-f}l—; + ‘(Jd:,T,ZJ
For any convex potential function, such as the inverse
square law, the linear approximation is a upper bound
on the actual potential energy. The configuration to
which the system “jumps” will therefore have lower
energy than expected, and thus the system will converge
even if it uses this approximation.

Incidentally, we have not tested the following in
practice, but it is possible to model forces which increase
with distance such as a spring force. In this case, the
potential function is E(di;) = fijd%. This type of
function is concave (upwards), and thus the method
in the previous paragraph does not work. To solve
such a model using linear programming, we replace the
function by a piecewise linear approximation. First,
define [ variables 0 < d;j1, dij2, . ..,dij;; <1 and add the
constraint dij = djj1 + dij2 + - - - + dij;. The piecewise
linear approximation to the energy function is

1
Eapprox(dij) = fij ) _(2k — 1)diji.

k=1

For k < dij < k + 1, this energy is minimized when
d,'jl = d,'jz = - = d,‘jk =1 a.nd dij(k+1) = d,'j — k.
The value of the approximate function is f;; (k2 + (2k +
1)(dij — k)) which is a good approximation to f;;d?;.

4.2 Applications. It is possible to apply these
new potential functions to interesting animations. For
example, a pearl falling in “shampoo” and a “lava

lamp”. The shampoo or “lamp fluid” is a gridlike “gas”
of spheres. A constant force attracts sphere S; to a fixed
grid point g;. The algorithm for modeling attraction of
a moving point p; to a fixed point g; is straightforward
from the math given above.

The pearl is a single sphere in a gravitational
potential falling through a “shampoo.” The lava lamp
fluid uses the same model. We also add a rising “blob”
of lava fluid subject to an upwards gravitational field.
The beads in the “blob” fluid are subject to a mutually
attractive force. For this we choose a potential function
which rises linearly to a particular value and then stops
increasing. This potential corresponds to a constant,
short-range force. This potential function is convex, and
we use the appropriate technique.

5 Interactions with Polyhedra

Our original compaction algorithm, generalized to
three dimensions, could handle interacting (nonrotat-
ing) polyhedra. However, we do not have good algo-
rithms for computing the necessary Minkowski sums of
polyhedral regions. In this section, we give an algorithm
for modeling the interaction of spheres with polyhedra
(but not polyhedra with polyhedra) which does not re-
quire the Minkowski sum. These can be applied to two
interesting animations: a foot stepping into a bed of
beads and beads falling in an hourglass.

5.1 Interaction of Spheres and Polyhedra.
To improve the running time and to generate a more
realistic motions, we limit the “jump” of p; to a cube of
width B centered at p{"T, the current position of sphere
Si,1<i<n3

Let P be a polyhedron. An element of P is a
vertex, edge, or face. Point p projects onto a face
if the perpendicular projection ¢ of p onto the plane
containing the face lies in the face itself. The definition
of p projecting onto an edge replaces “plane” by “line.”
Point p projects onto all vertices.

Let S; be a sphere of radius r; and let p§" be its
current position. An element e of polygon P potentially
interacts with S; if a) some point p in the cube of width
2B centered at p§"T projects onto e; b) the cube of width
r; + 2B centered at p{'" intersects e; c) the distance
of pfUr to its projection ¢ on the point, line, or plane
containing the element is at least r;. If P has fixed
position, then replace 2B by B in these definitions.

Here is the actual algorithm. For each sphere S;
and each element e of some polyhedron P with which
S; potentially interacts, set up the constraints as if there

SWe also limit the motions of the spheres in Sections 3.2 and
4.1, but it was not necessary to clutter the math with this detail.
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is a sphere of radius 0 attached to P at position gq.
As above, ¢ is the projection of the current position
P of S; onto e (or its extension to a line or plane,
if necessary). The algorithms of the previous sections
generate the jump.

5.2 Possible Applications. An hourglass is a set of
spheres inside a fixed polyhedron. A foot stepping into
a bed of beads is a massive polyhedron “falling” under
gravity into a box of beads.

6 Implementation and Results

As of the time of this writing, we had not finished im-
plementing non-gravitational potential functions. How-
ever, what we have is enough to test the speed of the
method and demonstrate the realistic motions it gener-
ates for spheres falling under gravity.

6.1 Spheres in a Box. Figure 2 illustrates 27
spheres falling under gravity in a box. We were able
to run this example in just a few seconds. We also
ran examples with 43, 53, and 63 spheres. These
experiments are an “acid test” for the method. All were
run on a 50 MhZ Sun workstation.

Spheres 27 64 125 216
Iterations 21 25 39 54
Time (sec.) 4 37 428 3011
Aver. Time 0.19 148 10.97 55.76

What is surprising is how slowly the number of
iterations rises. This is the number required to reach a
local energy minimum. The running time grows roughly
cubic in the number of spheres. In any case, it compares
very favorably with other simulation methods.

For even larger number of spheres, one would have
to break the box up into “zones” and simulate within
each zone. By switching between overlapping zones, one
could still generate a good animation.

6.2 Spheres and Polyhedra. The other example
we show is the interaction of spheres and polyhedra.
Actually, we are only doing circles and polygons here,
but the algorithm is about the same. Figure 1 shows 10
circles falling in a polygonal hourglass. Figure 2 shows
27 spheres falling in a cubic container.

7 Conclusion

Position-based physics and the linear programming al-
gorithms we use to simulate it are very good ways to
rapidly find local energy minima for many interacting
objects. They are much faster than other physical sim-
ulation techniques, and they are certainly useful for
CAD/CAM applications for which only the final config-
uration matters. The current techniques do not allow

rotation in three dimensions, but Li [4] has found ways
to allow rotation in two dimensions, and it may be possi-
ble to generalize this work or devise other methods. The
algorithms presented here do not simulate true physical
motion: 1) the physics is only semi-Newtonian, and 2)
the algorithms use a number of approximations to allow
us to apply linear programming. However, in graphics
appearance and speed are really all that matters, and
these methods rapidly generate motions which appear
realistic. Since no other method can currently generate
such motions with so little computation, position-based
physic and linear programming based simulations war-
rant consideration as a useful tool of computer graphics
and packing.
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