On the Relative Complexities of Some Geometric Problems*
(Extended Abstract)

Jeff Erickson'

1 Introduction

We consider a number of problems whose best known
algorithms run in roughly O(n%/3) time. While it is
generally believed that these algorithms are optimal,
at least up to polylogarithmic or n® factors, the best
known lower bound in any general model of computa-
tion is only Q(nlogn). We characterize these problems
by their relative complexities. That is, for certain pairs
of problems, we show that the complexity of one prob-
lem is asymptotically bounded by the complexity of the
other. Thus, a o(n%/3)-time algorithm for the “harder”
problem is impossible without a similar algorithm for
the “easier” one. Conversely, any better lower bounds
for the easier problem would immediately apply to the
harder problem as well.

This paper is similar in spirit to the earlier work of
Gajentaan and Overmars [17]. They introduce the class
of 3suM-hard problems, all of which are at least as hard
as the following simple base problem: Given n numbers,
do any three sum to zero? All of these problems seem
to require ©(n?) time to solve; thus, some earlier papers
describe them with the more suggestive but misleading
term “n2-hard”. (See [6].) The present classification
of “n*/3-hard” problems is not so clean. Many of our
reductions introduce extra logarithmic factors. More
importantly, we do not know if there is a single base
problem to which all these problems can be reduced.

2 Definitions and Background

2.1 Known Upper and Lower Bounds

For each of the problems we consider, the best lower
bound known in any general model of computation is
only Q(nlogn). This lower bound follows from results of
Steele and Yao in the algebraic decision tree model [25]
and Ben-Or in the algebraic computation tree model [4].

Better lower bounds are known for a few of these
problems in less powerful models, but these models

*Portions of this research were done while the author was visit-
ing Universitat des Saarlandes, Freie Universitat Berlin, and Uni-
versiteit Utrecht.

tComputer Science Division, University of California, Berke-
ley, CA 94720. Email: jeffe@cs.berkeley.edu

-85-

are inappropriate in more general settings. Chazelle
[8, 7] has proven a number of lower bounds for on-
line and offline range counting problems in the Fred-
man/Yao semigroup arithmetic model [16]. While this
model works quite well for studying this sort of counting
problem, it is not at all applicable to decision or opti-
mization problems. Similarly, Erickson [15] has proven
Q(n*/3) lower bounds for a number of problems, includ-
ing Hopcroft’s problem (Problem A) and unit distance
detection (Problem F), in what he calls the partition-
ing algorithm model. This model is specifically tailored
towards a specific class of incidence-detection problems.
Some problems, such as halfspace range checking (Prob-
lem E), can be solved in linear time in this model. Oth-
ers, such as line towering (Problem J), apparently can-
not be solved at all.

2.2 Relative Complexity

Let Ti(n) and T2(n) denote the complexities of two
problems II; and II,, expressed as functions of the in-
put size n. If Ti(n) = Q(T»(n)), or equivalently, if
T2(n) = O(T1(n)), we say that II; is harder than II,.
If T>(n) = O(Ti(n)log® n) for some constant ¢, we say
that IT; is almost harder than II,. Typically, this
means that II; is solved by a binary search or para-
metric search [13, 22], using an algorithm for II; as an
oracle, although more complicated reductions are also
possible. Finally, we say that II; is probably harder
than II, if the following conditions are met.

1. II; is almost harder than II,.

2. If Ty(n) = Q(n'*¢) for some € > 0, then II; is
harder than II,.

For example, suppose Il is solved using a recursive
divide-and-conquer strategy, similar to quicksort or
mergesort: the input is divided into two halves in linear
time, an algorithm for II; is applied to the partitioned
input, and problem II, is recursively solved for each of
the two partitions. Then we have the following upper
bound for T3(n) in terms of T3 (n).

[ign]
Ty(n) = O(Ti(n)) + 2T5(n/2) = D 2'O(T1(n/2'))

i=0

This upper bound can always be simplified to T5(n) =
O(Ti(n)logn), but if T1(n) = Q(n'*¢) for some con-
stant € > 0, the bound improves to T(n) = O(T1(n)).

2.3 Infinitesimal Reductions

We derive our relative complexity results through the
standard technique of reductions. Suppose we want to
show that problem II; is harder than problem II;. In
the simplest reduction argument, given an instance of
II,, we transform it into an instance of II; of roughly
the same size, call an algorithm for II; as a subroutine,
and transform the output of this subroutine to the result
of H2 .

We develop our relative complexity results in the al-
gebraic decision tree model of computation [25]. Most
of our results hold in more general models of computa-
tion such as algebraic computation trees [4] or the real
RAM [24], but a few results rely on specific properties
of the algebraic decision tree model.

Specifically, some of our reductions introduce formal
infinitesimals into the input before passing it to the II;
subroutine. See, for example, the proof of Theorem 4.
In order to justify this practice, we need two technical
lemmas. We will give only a cursory sketch of these
lemmasin this extended abstract; the formal statements
and proofs are included in the full version of the paper.

The first problem is that we are given an algorithm
for II; that works on any real input, but we need an al-
gorithm that works even if the input contains infinitesi-
mals. In the full paper, we show that any algorithm that
solves a problem over the reals also solves the same prob-
lem over any real closed field. For a similar argument,
see [14].

The second problem is that an algebraic decision tree
cannot really introduce infinitesimals into the input,
since the model only allows query polynomials with real
coefficients. Thus, we must show that the infinitesimals
can be simulated as follows. Represent each “number”
a+be+ce?+- - - as a polynomial in ¢, and modify the II;
subroutine to perform polynomial arithmetic in place
of real arithmetic. Since the polynomials introduced
by the transformation have bounded degree, and the
query polynomials used by algebraic decision trees have
bounded degree, this modification increases the running
time of the algorithm by only a constant factor. We can-
not similarly modify algebraic computation trees or real
RAMs, since algorithms in these models can compute
polynomials of unbounded degree.

- 86-

Jeff Erickson

3 Hopcroft’s Problem and its Friends

We begin with one of the oldest problems in compu-
tational geometry, first posed by John Hopcroft in the
early 1980’s.

Problem A. Hopcroft’s Problem: Given a set
of points and lines in the plane, does any point
lie on any line?

Best known upper bound: O(n*/320098" 7)) [21]

Hopcroft’s problem is a special case of a large number
of other more general problems, including the following.

e Detecting, counting, or enumerating incidences
between a set of “point-like” geometric objects
(points, line segments, circles, triangles, etc.) and a
set of “line-like” geometric objects (lines, line seg-
ments, rays, circles, etc.)

Finding the closest point-line pair
Locating a set of points in a line arrangement
Counting intersections among line segments

Triangular range checking (Do‘es any triangle con-
tain a point?)

Halfplane range counting (How many points are in
each halfplane?)

Detecting intersections, or finding the closest pair,
among lines in IR?

Rather than attempting to give an exhaustive list of
easy reductions, we will describe only a few specific
problems, for which the reductions may be less obvious.

Problem B. Ray Shooting over a Polyhedral
Terrain: Given a polyhedral terrain and a set
of rays in IR?, does any ray hit the terrain?

Best known upper bound: O(n*/3+¢) [10]

Theorem 1. Ray shooting over a polyhedral terrain is
harder than Hopcroft’s problem.

Proof: Given a set of points and lines, we construct a
polyhedral terrain and a set of rays as follows. Con-
struct an arbitrary triangulation of the points. Di-
vide each triangle into four sub-triangles by bisecting its
edges. See Figure 1(b). This ensures that no triangle
shares two of the original points. To create the terrain,
lift the triangulation into IR3, placing each of the origi-
nal points on the plane z = 1, and all the other vertices
on the plane z.= 0. See Figure 1(c). To create the rays,
chop each line at some very large z- or y-coordinate,
and lift the resulting ray to the plane z = 1. A ray hits
the terrain if and only if the corresponding line contains
one of the original points. The entire reduction can be
carried out in time O(n log n). o

On the Relative Complexities of Some Geometric Problems

(2) (b)

Figure 1. Transforming Hopcroft’s problem into ray shooting over
a polyhedral terrain (Theorem 1). (a) Initial triangulation of the
points. (b) Refined triangulation. (c) Final terrain.

Problem C. Segment Depth Order Verifica-
tion: Given a sequence of non-intersecting line
segments, is any segment below a segment fol-
lowing it in the sequence?

Best known upper bound: O(n*/3+¢) [5]

Theorem 2. Segment depth order verification is
harder than Hopcroft’s problem.

Proof: Suppose we are given a set {p1,...,pn} of
points and a set {ly,...,l,} of lines. Lift each point
p; onto the horizontal plane z = —i and each line
l; onto the plane z j. Present the sequence
(p1,p2,---,Pn, 11, 12,...,15) to a depth order verification
algorithm, where each point is considered a segment of
zero length and each line a segment of infinite length.
The depth order algorithm reports that some pair of
“segments” is out of order if and only if there is a point-
line incidence in the original input. (]

Problem D. Segment Cyclic Overlap: Given a
set of non-intersecting line segments in IR, does
any subset overlap cyclically?

Best known upper bound: O(n%/3+¢) [5]

Theorem 3 (De Berg et al. [5]). Segment depth
order verification is harder than segment cyclic overlap.

Proof: The segment cyclic overlap problem can be de-
cided by applying any O(nlogn) sorting algorithm to
the segments, and checking to see if the resulting se-
quence is actually sorted. (m}

Theorem 4. Segment cyclic overlap is harder than
Hopcroft’s problem, in the algebraic decision tree model
of computation.

Proof: Suppose we are given a set P = p1,p2,...,Pn
of points and a set L = l1,ls,...,1; of lines. Without
loss of generality, none of the lines is horizontal. We
produce a set of non-intersecting segments as follows.
Replace each line l; with two parallel lines I} and I}, at
horizontal distance € to the right and left of I;, respec-
tively, where ¢ is a formal infinitesimal. Lift each line
I} to the plane z = 3i + 1 and each line I to the plane
z2=3i—1.

-87-

Figure 2. Transforming Hopcroft’s problem into segment cyclic
overlap (Theorem 4). (a) Initial set of points and lines. (b) Trans-
formed set of segments, seen from above. The incidence is trans-
formed into an overlap cycle.

Next, for each line /;, add a segment s; parallel to the
z-axis and in the plane z = 3¢, such that the projection
of s; intersects the projections of both I} and I, but
is far away from every other point and line. It suffices
to put s; at an y-coordinate far above all the original
points and line intersections.

Finally, replace each point p; = (zj,y;) with a
line segment p; with endpoints (z; — 2¢,y;, —3n) and
(zj + 2¢,y;,6n). These line segments are almost paral-
lel to the z-axis. Our final collection of 4n line segments
consists of I;" ,I7,8i, and p; for all 7, j. The entire trans-
formation can be performed in time O(nlogn).

If there are no incidences between P and L, then none
of the segments p; are above or below any other seg-
ment. Since the other segments are all parallel to the
zy-plane, there are no cyclic overlaps. On the other
hand, if there is an incidence between l; and p;, then
the four segments 13,-,1;" , 7, s; overlap cyclically. See
Figure 2. O

Problem E. Halfspace Range Checking
in IR®: Given a set of points and hyperplanes
in IR®, is every point above every hyperplane?

Best known upper bound: O(n*/310g®*) n) [19]

Theorem 5. Halfspace range checking in IR® is harder
than Hopcroft’s problem.

Proof: Every point and hyperplane in IR? can be repre-
sented in homogeneous coordinates by a vector in R%*?,
so that the relative orientation of any point p and any
hyperplane h is determined by the sign of the inner
product (p, k). Specifically, if (p, k) > 0 then p is above
h; if (p, h) = 0, then pis contained in k; and if (p, h) < 0,
then p is below h.

Using this observation, we can reformulate the two
problems as follows.

e Hopcroft’s problem: Given a set of red and blue
vectors in IR3, is there a red vector p and a blue
vector h such that (p, h) =07

o Halfspace range checking in IR®: Given a set of red
and blue vectors in IR, is there a red vector p and
a blue vector h such that (p, h) <07

Now consider the function o : R? — IR® defined as
0’(2?, Y, Z) = (x2’ yZ, 22) \/§$y, \/iyza \/52.‘0)‘

This function squares inner products: (o(p),o(h)) =
(p, h)z. Thus, we can transform any set of points and
lines into a set of of five-dimensional points and hyper-
planes in linear time, by applying the function o to the
entire set, so that no point is below any hyperplane and
all incidences are preserved.

4 Planar Distance Problems

Problem F. Unit Distance Detection: Given
a set of points in the plane, is any pair of points
at unit distance?

Best known upper bound: O(n*/3log?** n) [18].

Erickson’s lower bound for the unit distance prob-
lem follows immediately from his lower bound proof
for Hopcroft’s problem [15]. Nevertheless, we are un-
able to show that detecting unit distances is harder, or
easier, than detecting point-line incidences, nor are we
able to show that both are harder than some third sim-
pler problem. Both problems are special cases of several
other problems, such as point-circle incidence detection
in the plane, point-plane incidence detection in IR?, and
unit-distance detection in IR®.

Problem G. Distance Selection: Given a set of
points in the plane and an integer k, what is the
kth smallest interpoint distance?

Best known upper bound: O(n%/3log®** n) [18]

Theorem 6. Distance selection is almost harder than
unit distance detection.

Proof: We can detect unit distances with a binary
search over the (g) possible values for k, using a distance
selection algorithm at each step in the search. (]

Problem H. Distance Ranking: Given a set of
points in the plane how many pairs of points are
closer than unit distance apart?

Best known upper bound: O(n*/3log®** n) [18]

Theorem 7. Distance selection is almost harder than
distance ranking. Distance ranking is almost harder
than distance selection.

-88-

Jeff Erickson

Proof: The binary search algorithm described in the
proof of Theorem 6 can also be used to solve the distance
ranking problem. To select the kth smallest distance,
we can perform a parametric search over the space of
interpoint distances, using a distance ranking algorithm
as an oracle [2]. (]

Theorem 8. Distance ranking is harder than unit dis-
tance detection in the algebraic decision tree model.

Proof: To detect the presence or absence of unit dis-
tances in a set of points, we call a distance ranking algo-
rithm twice, once on the original set of points, and once
on the set of points scaled by a factor of 1 + ¢, where ¢
is an infinitesimal. The unit distance rank is the same
in both sets if and only if the original set contains no
unit distances.]

5 Lines and Segments in Space

Problem I. Polyhedral Terrain Intersection:
Given two polyhedral terrains in IR®, do they in-
tersect?

Best known upper bound: O(n*310g®™) n) [10, 9,
19

Problem J. Line Towering: Given a set of red
and blue lines in IR3, are all the red lines above
all the blue lines?

Best known upper bound: O(n*/310g°") n) [9, 19]

Theorem 9. Line towering is almost harder than poly-
hedral terrain intersection.

Proof: Chazelle et al. [10] show that the smallest ver-
tical distance between two polyhedral terrains of total
complexity n can be reduced to several instances of line
towering, with total complexity O(n log® n). Their algo-
rithm can also be used to decide if two terrains intersect.
Since the complexity of line towering is o(n?), this re-
duction introduces a multiplicative factor of less than
log* n into the running time.]

Problem K. Line Cyclic Overlap: Given a set
of non-intersecting lines in IR, do any three lines
overlap cyclically?

Best known upper bound: O(n*/310g®V n) [11, 9,
19]

This problem is clearly a special case of segment cyclic
overlap (Problem D).

Theorem 10 (Chazelle et al. [11]). Line towering
is almost harder than line cyclic overlap.

On the Relative Complexities of Some Geometric Problems

Proof: The line cyclic overlap problem can be solved by
applying any sorting algorithm to the lines, and check-
ing whether the resulting sequence is a valid depth or-
der. (Compare Theorem 3.) The sequence can be veri-
fied as follows. Split the sequence of lines into two equal
halves, verify each of the two halves recursively, and use
a line towering algorithm to check that every line in the
first half is above every line in the second half.]

Problem L. Farthest Line Pair: Given a set of
lines in IR3, find the pair of lines separated by
the largest vertical distance.

Best known upper bound: O(n*/310g°® n) [23, 9,
19]

Theorem 11 (Pellegrini [23]). Line towering is al-
most harder than farthest line pair.

Proof: The farthest line pair problem can be solved as
follows. Split the set of lines into two classes, and recur-
sively find the farthest line pair within each class. To
find the farthest pair between the two subsets, perform
a parametric search, using a line towering algorithm as
an oracle. See [23] for further details. (]

Theorem 12 (Chazelle et al. [9]). Halfspace range
checking in R® is probably harder than line towering.

Proof: Consider the special case of consistently ori-
ented sets of lines, in which the projections of the blue
lines onto the zy-plane all have higher slope than the
projections of the red lines. In this case, using Plicker
coordinates [26], we can express each red line as a point
in IR® and each blue line as a hyperplane in IR®, so that
relative orientation is preserved.

The general problem can be solved using the following
divide-and-conquer approach. The median slope among
the zy-projections of all the lines naturally partitions
the red lines into two subsets R; and R,, and the blue
lines into B; and B, so that the projected slopesin R; U
B; are all larger than the projected slopes of Ry U Bs.
The subset pairs (R;, B2) and (R, B;) are consistently
oriented, and thus can be checked using the Pliicker
space algorithm above. The other two pairs of subsets
are checked recursively. 0o

6 High-Dimensional Range Checking

Problem M. Points Outside Intersecting
Unit Balls in IR?: Given a set of points and
a set of unit balls in IR®, such that every ball
contains the origin, is any point contained in any
ball?

Best known upper bound: O(n*/3log*3n) [3]

This computational problem is closely related to the
following open combinatorial problem: What is the

-89-

worst-case combinatorial complexity of the union of n
intersecting unit balls in IR>? The best known bounds
are only O(n?) and Q(n). If the complexity of the
union is always linear, then Problem M can be solved in
O(nlogn) expected time using random sampling tech-
niques [12]. If we allow balls of different sizes, or do
not require a common intersection, the union can have
complexity Q(n?). The intersection of unit balls, on the
other hand, always has complexity O(n).

Problem M is a special case of several other harder
range checking algorithms. The reductions derive di-
rectly from simple geometric transformations. We leave
the details as exercises for the reader.

e Unit-spherical range checking in IR?

e Anti-spherical range checking in R3 (Is every point
contained in every ball?)

e Halfspace range checking in IR*
o Unit anti-spherical range checking in IR*

Problem N. Bichromatic Closest Pair in IR®:
Given a set of red and blue points in IR, find the
closest red-blue pair.

Best known upper bound: O(n%/3log*/3n) [3]

Theorem 13. Bichromatic closest pair is harder than
unit spherical range checking, and unit spherical range
checking is almost harder than bichromatic closest pair.

Proof: We can solve any unit spherical range check-
ing problem by looking for the closest foreign neighbor
among the points and the centers of the spheres. If the
distance separating the closest point-center pair is less
than unity, then the point is in the ball; otherwise, every
point is outside every ball. Conversely, we can find the
bichromatic closest pair with a parametric search over
the space of interpoint distances, using a unit spherical
range checking algorithm as an oracle. a

Problem O. Euclidean Minimum Spanning
Tree in IR3: Given a set of points in IR3, con-
struct its Euclidean minimum spanning tree.

Best known upper bound: O(n*/31og*® n) [3)

Theorem 14. Euclidean minimum spanning tree is
harder than bichromatic closest pair, and bichromatic
closest pair is probably harder than Euclidean minimum
spanning tree.

Proof: The first half of the theorem is obvious. The
second half follows from a complicated reduction de-
scribed by Agarwal et al. [3, Theorem 5] m]

Problem P. Nearest Foreign Neighbors in
IR3: Given a set colored points in IR3, find for
each point the closest point with a different color.

Best known upper bound: O(n%/3log®/3 n) [1]

Theorem 15 (Yao [28]). Nearest foreign neighbors
is almost harder than FEuclidean minimum spanning
tree.

Proof: We can construct the minimum spanning tree
using the following algorithm, originally published by
Boruvka in 1926 [27]. We start with a forest of n one-
vertex trees. In each phase of the algorithm, we find
the minimum weight edge leaving each tree, and add
it to the evolving forest. After O(logn) phases, the
forest contains only the minimum spanning tree. In the
geometric setting, each phase can be easily implemented
using a nearest foreign neighbors algorithm. o

Problem Q. Farthest Foreign Pair in IR*:
Given a set of red and blue points in IR?, find

the farthest red-blue pair.
Best known upper bound: O(n*/310g°™") n) [19]

Theorem 16. Farthest foreign pair is harder than unit
anti-spherical range checking, and unit anti-spherical
range checking is almost harder than farthest foreign
pair.

Proof: Analogous to the proof of Theorem 13. (]

7 Open Problems

We mention one more interesting problem that we have
been unable to relate to any of the others.

Problem R. Extreme Points: Given a set of
points in IR?, is any point a convex combination
of other points? Equivalently, is every point a
vertex of the set’s convex hull?

Best known upper bound: O(n*/3+¢) [20]

Figure 3 summarizes our results, and suggests a num-
ber of open problems. Is there some problem that is
easier than both Hopcroft’s problem and unit distance
detection? Can we better relate the complexities of the
problems in Section 57 Is there a single problem that is
easier than all the problems we have considered?

Ultimately, of course, we would like a proof that all
these problems require Q(n*/3) time in algebraic deci-
sion tree model, as we strongly suspect. Unfortunately,
proving a lower bound of w(nlogn) for any decision
problem in any general model of computation seems to
be completely out of reach at present.

Jeff Erickson

Figure 3. Summary of results. Arrows point from harder to easier
problems. Dotted arrows indicate “almost harder”. Dashed ar-
rows indicate “probably harder”. Outlined arrows indicate results
that only hold in the algebraic decision tree model.

References

[1] P. Agarwal and J. Matouiek. P 1 com

2] P. K. Agarwal, B. Aronov, M. Sharir, and S. Suri. Selecting distances in the
g
plane. Algorithmice, 9:495-514, 1993,

[3] P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Euclidean
minimum spanning trees and bichromatic closest pairs. Discreie Compui.
Geom., 6:407-422, 1991.

{4] M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. 15th
Anns. ACM Sympos. Theory Compul., pages 80-86, 1983.

{5] M. de Berg, M. O and O. Sch Computing and verifying
depth orders. In Proc. 8th Anns. ACM Sympos. Compuil. Geom., pages 138-145,
1992.

[6] S. Bloch, J. Buss, and J. Goldsmith. How hard are n2.hard problems?
SIGACT News, 25(2):83-85, 1994.

[7] B. Chaselle. Lower bounds on the complexity of polytope range searching.
J. Amer. Math. Soc., 2:637-666, 1989.

[8] B. Chaselle. Lower bounds for off-line range searching. In Proc. 27th Anns.
ACM Sympos. Theory Comput., 1995. To appear.

[9] B. Chaszelle, H. Edelsbrunner, L. Guibas, and M. Sharir. Diameter, width,
closest line pair and parametric searching. Discrete Compsl. Geom., 10:183—
196, 1993,

[10] B. Chaselle, H. Edelsbrunner, L. Guibas, and M. Sharir. Algorithms for
bichromatic line segment problems and polyhedral terrains. Algorithmica,
11:116-132, 1994.

[11] B. Chazelle, H. Edelsbrunner, L. J. Guibas, R. Pollack, R. Seidel, M. Sharir,
and J. Snoeyink. Counting and cutting cycles of lines and rods in space. In
Proc. 313t Annu. IEBE Sympos. Found. Compei. Sci., pages 342-251, 1990.

[12] K. L. Clarkson and P. W. Shor. Applications of random sampling in com-
putational geometry, I1. Discrefe Comput. Geom., 4:387-421, 1989.

, reported in [3], 1991.

{13] R. Cole. Slowing down sorting networks to obtain faster sorting algorithms.
J. ACM, 34:200~208, 1987.

[14] J. Erickson. Lower bounds for linear satisfiability problems. In Proc. 6th
Anne. ACM-SIAM Sympos. Discrete Algorithms, pages 388-395, 1995.

{15] J. Erickson. New lower bounds for Hopcroft’s problem. In Proc. 11th Anns.
ACM Sympos. Compui. Geom,, 1995. To appear.

[16] M. L. Fredman. Lower bounds on the complexity of some optimal data
structures. SIAM J. Compui., 10:1-10, 1981.

[17] A. Gajentaan and M. Overmars. On a class of O(n’) problems in computa-
tional geometry. Compst. Geom. Theory Appl., to appear. Appeared previously
as: n2.hard probl in computati 1g try. Report RUU-CS-93-15,
Dept. Comput. Sci., Utrecht Univ., Utrecht, Netherlands, Apr. 1993.

{18] M. J. Katz and M. Sharir. An expander-based approach to geometric op-
timization. In Proc. 9th Asns. ACM Sympos. Compui. Geom., pages 198-207,
1993.

{19) J. Matouiek and O. Schwarzkopf. On ray shooting in convex polytopes.
Discrete Computl. Geom., 10(2):215-232, 1993.

[20] J. Matouiek. Linear optimization queries. J. Algorithms, 14:432-448, 1993.
The results combined with results of O. Schwarskopf also appear in Proc. 8th
ACM Sympos. Compui. Geom., 1992, pages 16-25.

[21] J. Matoudek. Range searching with efficient hierarchical cuttings. Discrete
Comput. Geom., 10(2):157-182, 1993.

[22] N. Megiddo. Applying parallel computation algorithms in the design of
serial algorithms. J. ACM, 30:852-865, 1983.

[23] M. Pellegrini. Incid and t-neighbor probl for lines in 3-space.
In Proc. 8th Anns. ACM Sympos. Compul. Geom., pages 130-137, 1992.
[24] F. P. Preparata and M. 1. Sh Computational G try: en Introdscii

Springer-Verlag, New York, NY, 1985.
[25] J. M. Steele and A. C. Yao. Lower b
Algorithms, 3:1-8, 1982.
[26] J. Stolfi. Oriented Projective Geometry: A Framework for Geometric Compuiations.
Academic Press, 1991.

[27] R. E. Tarjan. Daia Siruciures and Network Algorithms, volume 44 of CBMS-NSF
Regional Conference Series in Applied Mathematics. Society for Industrial Applied
Mathematics, 1983.

braic d trees. J.

ds for alg

[28] A.C. Yao. On constructing minimumspanning trees in k-dimensional spaces
and related problems. SIAM J. Compui., 11:721-736, 1982.

