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Abstract
We obtain lower bounds for the maximum number of triangulations, perfect matchings,
spanning trees and polygonizations of a set of n points in the plane. Our results improve pre-
viously known values. It is also proved that the number of perfect matchings and spanning
trees is minimum when the points are in convex position.

1 Introduction and preliminaries

Depending on how the complete graph Ky is drawn in the plane by means of points and straight

line segments connecting them, some of its subgraphs will have crossings, i.e. at least one pair
of open line segments will intersect, or else will be crossing-free. The problem of bounding
the number of crossing-free subgraphs of K, has been studied in the last years, particularly
the case of crossing-free Hamiltonian cycles, which correspond to simple polygonizations of a
set of n points. Newborn and Moser [12] introduced the problem and found a configuration
with ©(10%/3) simple polygonizations. By introducing other configurations or analyzing more
thoroughly existing ones, this lower bound has been successively improved over the last years
[2, 8, 5]. )

On the other hand it seems considerably difficult to obtain sharp upper bounds for this
problem. In [1] a fundamental result was proven, namely that the number of crossing-free
subgraphs of any plane drawing of K, (even if one allows non rectilinear edges) never exceeds
a fixed exponential in n. An upper bound of 173000" on the number of triangulations can be
found in [14].

In this paper we introduce a particular configuration of n points giving Q(4.642") different
polygonizations, thus improving previous results. The analysis is based on generating functions
and an application of Darboux’s lemma. The same configuration provides a large number of
crossing-free subgraphs of several kinds. In particular, we prove that the number of triangulations
is Q(S"no(l)), the number of Euclidean perfect matchings is ©(3"n°()), and the number of
Euclidean spanning trees is ©(9.35"). These results improve those appearing in [14].

The basic configuration C,, we will analyze is depicted in Figure la. It consists on 2n points,
D1, ...,Pn on the upper chain L; and qi,...,¢, on the lower chain L,. Both chains are convex
with opposed concavity; for every i and j the line connecting p; and p; leaves all points of L
below, and the line connecting g; and g; leaves all points of L, above. The numbering of the
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points in both chains is from left to right. When it comes to compute bounds for sets of n points
we will just use Cy /2.

For a configuration to be useful in this setting, the number of crossings has be to be relatively
small, it is 2("42) + ("42) ~ n*/48 for C, 2, and it is desirable to have many symmetries in order
to simplify the analysis.

We need as prerequisites several results from enumerative combinatorics. First, the classical
result that the number of triangulations of a convex polygon with n + 2 vertices is the Catalan
number C, = (3")/(n+1) = ©(n~3/24™). Also that the number of Euclidean perfect matchings
of 2n points in convex position (classically referred to as non-crossing configurations of chords
on a circle) is again the Catalan number C,,. And finally that the number of Euclidean spanning
trees of n-+1 points in convex position is equal to (*") /(2n+1) = ©(n~3/2(27/4)"), a generalized
Catalan number. The first result goes back to Euler; for the second one see [11, 4)]; the third
one can be found in [4] (see also [13]).

From now on a matching will be an Euclidean perfect matching, a tree will be an Euclidean
spanning tree, and polygonizations will always be simple. Points will always be assumed to be
in general position, in our case no three of them collinear.

2 Triangulations, matchings and trees

In [14] one can find a set of n points admitting in the order of 6.75" triangulations (this is a
correction, using the results in [9], of the claimed value of 9.08"). Also in [14] sets of n points
are shown with 2.618" matchings and 7.10" trees. The configuration C, allows us to increase
these values.

Theorem 2.1 There are sels of n poinis with 1) Q(8"n°M) triangulations; 2) Q(3"n°M)
matchings; and 3) 2(9.35") trees. -

Proof. In all three cases we will compute either the exact value or an asymptotic lower bound
for the respective number of triangulations, matchings and trees in C,. Substituting n by n/2
when necessary will yield the desired bounds.

1) Any triangulation of C, has to use necessarily the diagonals pip2,p2ps,---,PnP1,
9192,9293, - - -,qnq1 and pi1q1,pngn. Hence we have a decomposition of the convex hull into
two convex n-gons and one non-convex 2n-gon P. For triangulating P we start at edge p1qa; it
" can joined to either p;, the next point in Ly, or to g2, the next point in L3, and once the choice
has been made we are confronted with a new choice between L; and L,. In the end there have
been n — 1 selections from L; and n — 1 from L;. Thus the number of triangulations in C, is
equal to C2_,(?"=2) = ©(64"n~"/2).

2) In any matching of C,, there will be k points of L, matched with k points of Ly, with n—k
even and 0 < k < n. The unmatched points will form two convex sets of size n — k. Thus the

number of matchings is ,
n
n 2
> (k) Cla-yy2

k=0
n—k even

This is a sum of positive unimodal terms which could be accurately estimated by standard
methods [3]. However it is enough for our purposes to note that the larger term occurs when
k = n/3 and that Stirling’s estimate gives (n';3)203, /3 =09

3) Consider the configuration Cym, where n = 2um and u is to be determined. Take any
tree on L; and any matching of size m between L; and L. Now take any tree on the um —m
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unmatched points in Ls. Finally add an extra edge in Lo to produce a tree in the whole
configuration. In this way we get

um : 2u-—1 ut 2
tumtum—m( m ) ~ [(27/4) ((u _ l)u-l) }

different trees, where t,41 = (3:) /(2n+ 1) is the number of trees for n points in convex position
as mentioned above. Setting g(u) = (27/4)%~1/2uy(y — 1)} =")/*  we aim at maximizing g(u).
Elementary calculus shows that the maximum is achieved at ug = 1 +3\/§/2. The desired value

n/2u

is then g(uo) = 9.35. o
P, P.
*——=8
.’/__.
4, . q,
la 1b

Figure 1: Matchings and trees in Cy,.

We close this Section by proving an absolute lower bound on the number of matchings and
trees of any configuration (note that the result is trivial for the number of polygonizations).

Theorem 2.2 The number of matchings of a sel n points in the plane is minimum when the
points are in conver position. The same resull holds for the number of trees.

Proof. We need the well-known fact that the number C, of matchings of 2n points in convex
position, a Catalan number, satisfies the recurrence C, = CoCp-1 + C1Cp—2 +--- + Cn-1Co.
Now let P be a set of 2n points, a; a point in the convex hull of P and a3, ...,az, an ordering
of the remaining points in polar order with respect to a;. If in a matching of P point a; is
joined to ay; then, by induction on n, the remaining 2n — 2 points can be matched in at least
Ci—1Cn—; ways. Hence the number of matchings is at least CoCn-1 + ...+ Cn-1Co = Cp,. The
proof for the number of trees is analogous and uses the recurrence tn = ) ., x4 titjte for
the number ¢, of trees of n points in convex position (see [13]). o

3 Polygonizations

Let C be a simple curve in C, starting at p; and ending at g,, and let k be the number of jumps
on C from L; to L, and from L to L,. Let also {pi,,...,pi, } and {g;,,...,qj,} be the extremes
of the jumps, with 4; < i < ... <4 and j; < j2 < ... < ji. Among all curves starting at p;
and ending at g,, we consider those in which the points {pi,,...,pi.} ({¢j,s---,9j.}) are visited
in exactly this order in the curve (see Figure 2a). We will denote by S the family of such curves.
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Obviously, one can close these curves by adding an adequate extra point on La. Therefore,
asymptotically the number of polygonizations of the 2n+1 points will be no less than the number
of curves in S. If we take C € S and consider how C visits the n points on L; and L2, we have
the curves shown in Figure 2b. Notice that none of the jumps in the figure can be enveloped by
another jump because {p;,,...,Pi.} ({4j1>---,¢j.}) are visited in exactly this order. Now, let
us consider the four types of curves shown in Figure 3.

Type 1: the curve starts and ends at two points not in L.

Type 2: the curve starts at a point not in Lz and ends at g¢;.

Type 3: the curve starts at a point not in Ly and ends at ¢n.

Type 4: as type 1, but ¢; and gn, must be directly joined, a point ¢; is visited before ¢;, and a
point g; is visited after gn.

Notice that, for example, two curves of type 2 can visit the points {q1,---,9n} in the same order
but they are considered different if they have different jumps. We are ready for the following
result.

\ x
o Lo

2a 2b

Figure 2: Polygonizations in C;,.

Figure 3: Four types of curves.
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Theorem 3.1 There are sets of n poinis with Q(4.64™) polygonizations.

Proof. We will denote by g1(n), g2(n),g3(n),g4(n) the number of curves of type 1, 2, 3, 4,
respectively. Then, recurrence formulas for g;(n) (see [6, 5]) can be obtained because every
curve of any of the four types is formed by shorter curves of the same types. They are

gi(n) = ga(n) +ga(n) + 02, g2(D)ga(n — i) + iy ga(dgr(n—id), n>1;
g2(n) = galn—1)+ga(n—1)+ Z:—x ga1(D)g2(n—i-1), n>3;

g3(n) = giln—=1+ga(n—1)+gs(n— 1)+ qi(i)ga(n—i—1), n>3;
94(n) = T ga(i)ga(n—i), n24,

with suitable initial conditions.
Let Gi(z) = Y_,>09i(n)z" be the generating function of g;(n), for 1 < i < 4. From the

equations above we obtain:
Gi1(2)Ga(z) = (1/2=2)Ga(2)+2z-1;
G4(2) (Ga(2) — 2)%; .
G1(2)Ga(z) = (1-2z+42%)G1(2) + (2 = 2)Ga(2) — 2Ga(2) + 2,

‘and from these
G2(2)® — 2G2(2)* + (=14 32 = 2%)Ga(2) + 2(z = 1)* = 0.

The smgulantl&s of the solutions to this equation must be zeros of the discriminant A(z) =
5 (322° — 1172% + 1682% — 11222 + 362 — 4) (see [10]). Solving A(z) = 0 we obtain the real
root z; = 0.2154185247 as the closest to zero. Therefore, by Darboux’s theorem (7]

g2(n) = ean~CH(1/20)" 4 0 ((1/21)n=CHDIY)

where v is equal to 2 or 3, and similarly for gs(n).

On the other hand, if ga(n k) denotes the number of curves of type 3 with k jumps then
g3(n) = Y_i g3(n, k). If g(n) is the number of curves in S with n/2 points on L; and n/2 points
on Ly, we have g(n) = ¥, g3(n/2, k)%. Using the inequalities
93( )?

g3(n)? > g(2n) > =———

then lim, .o g(n)}" = 1/2, = 4.642126305. m]

4 Concluding remarks

We have analyzed a particular configuration of points in the plane with a number of crossing-
free subgraphs of several kinds which improves previous results. Whereas for triangulations and
matchings our formulas are tight, a deeper analysis might eventually show the existence of a
larger number of trees and polygonizations. We can prove however an upper bound of O(5.61™)
on the number of polygonizations of Cy /3.

If we consider the related problem of maximizing the number of (Euclidean) bipartite match-
ings among a set of n/2 red points and n/2 blue points, one can prove a lower bound of
Q(5%/2n9(1)) again using the configuration C, with alternating colours in both chains.
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