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The fortress problem was posed independently by Derick Wood and Joseph Malkelvitch to de-
termine the number of guards sufficient to cover the exterior of an n-vertex polygon. O’Rourke and
Wood showed that [n/2] vertex guards are sometimes necessary and always sufficient. Yiu and
Choi considered a variation of the problem by allowing each guard to patrol an edge (called an edge
guard) of the polygon and obtained a tight bound of [n/3] edge guards for general polygons. In
this paper, we unify and generalize both results by considering the number of k-consecutive vertez
guards that are required to solve the fortress problem. A tight bound of [n/(k + 1)] is obtained.

1 Introduction

Given a simple polygon, a point z, exterior or interior to the polygon, is said to be visible from
(or covered by) a point y if the line segment joining them does not intersect the boundary of the
polygon. The definition is extended to the visibility of a point from an edge. A point z is visible
from an edge uv if there exists a point y on uv such that z is visible from y.

The art gallery problem asks how many guards are sometimes necessary and always sufficient to
cover the interior of an n-vertex simple polygon. The problem was solved by Chvatal and Fisk [3].
Among the different variations of the problem, the fortress problem requires the guards to cover the
exterior instead of the interior of the polygon. For an excellent description of these problems, refer
to [3, 4]. O’Rourke and Wood [3] solved the fortress problem for vertex guards. Yiu and Choi [6]
solved the corresponding problem for edge guards. In this paper, the power of k-consecutive vertez
guard in the fortress problem is investigated.

A k-consecutive verter guard is a set of vertex guards located at k consecutive vertices on the
boundary of the polygon while a k-consecutive edge guard is a mobile guard which is allowed to
patrol k consecutive edges. This paper shows that [n/(k + 1)] k-consecutive vertex guards are
sometimes necessary and always sufficient to cover the exterior of any n-vertex simple polygons for
any fixed £ < n. In [6], it was shown that the power of an edge guard is equivalent to that of a
2-consecutive vertex guard in the worst case for general simple polygons with respect to the fortress
problem. In this paper, a different proof is used to further generalize the result by showing that the
power of allowing each guard to patrol k consecutive edges is equivalent to that of placing guards
at (k + 1)-consecutive vertices. The problem of finding the minimum value of k such that a single
k-consecutive guard can cover the interior of the polygon is solved in [1] for both vertex and edge
guards. Other related problems are found in [2, 5].

Section 2 will show by examples that there exist polygons which require [n/(k+1)] k-consecutive
vertex guards. These examples also establish the same bound for (k — 1)-consecutive edge guards.
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One might wonder if the problem can be solved by just leaving every (k + 1)th vertex unguarded.
Examples will also be given to show that this simple strategy does not work. It can, however, be
used as the basis of a sufficiency proof presented in section 3. Some related open problems will be
discussed in section 4.

2 Some Examples

A simple n-sided convex polygon requires [n/(k+1)] k-consecutive vertex guards to cover its exterior
for any fixed k < n. Thus lemma 1 is proved. The same example can be used to establish lemma 2.

Lemma 1 [n/(k+1)] k-consecutive vertez guards are sometimes necessary to cover the exterior of

a simple polygon.

Lemma 2 [n/(k + 2)] k-consecutive edge guards are somelimes necessary to cover the ezterior of

a simple polygon.

From now on, a k-consecutive verter guard is simply referred to as a guard. A vertex of the
polygon is called a guarded vertez if one of the guards is assigned to it. That is, at least one of the
vertex guards in any of k-consecutive vertex guards is located on that vertex. Other vertices are
called unguarded. In the worst case, the number of guarded vertices is at least as many as that of
unguarded vertices. One might wonder whether by leaving only every (k + 1)th vertex unguarded,
the exterior will always be covered. There will be at most n different guard placements depending
on which vertex one starts with according to the above method. However, by modifying figure 6.2
of [1], one can easily show that this simple strategy does not work for any value of k.
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Figure 1: Example of unguarded triangle

The reason that this simple method does not work is the following. Given a polygon, each
connected region inside its convex hull but exterior to the polygon is called a pocket. A triangulation
graph of a pocket is a graph whose embedding is a triangulation of the pocket. Using the above
simple strategy, there may exist some triangular faces (unguarded triangles) whose vertices are all
unguarded. Such triangles are not guaranteed to be covered by the guards. On the other hand, if all
faces of the triangulation are guarded, the pocket will be guarded. For example, in figure 1, where
k = 2, a part of each of the two unguarded triangles is not covered. The next section will show how
the positions of the guards can always be shifted in such a way that all unguarded triangles become
guarded.
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3 Sufficiency Proof

., Vn in a counterclockwise order. That is, if

Let the vertices of the polygon be indexed as v;, vq,
we walk along the boundary, the interior of the polygon is always on the left. Consider the convex

hull of the polygon, the regions to be covered are the one exterior to the hull and those pockets.
Starting from any vertex, apply the simple strategy of leaving every (k + 1)th vertex unguarded as
described above. If no two consecutive hull vertices are unguarded, the region exterior to the hull
will be covered, otherwise, adjustment can be made to this initial placement of guards to ensure
that every other hull vertex is guarded (see lemma 5). Triangulate the pockets. In fact, the problem
mentioned in section 2 will only occur inside the pockets. The idea of the proof is to shift some of the
guards by at most one vertex in a counterclockwise direction in order to cover all those unguarded
triangles.
A guard located at vertices v;, vi41, . . ., Vi+k—1 can be defined by two vertices (v;, vijr—1). Moving

it one step to the left is the same as shifting it from (vi,vi4r—1) to (vit1,vi4k). A guard at
(vi, vi4k—1) is said to be on the right of vertex vi;i:. Every unguarded triangle is defined by three
vertices. For two unguarded triangles, (vi,vm,vn) and (vp,vq,v;) Wwhere /I <m<nandp<g<r,
there are only three possible cases if n > r: (1) p > m (figure 2a), (2) m > r and p > | (figure 2b),
and (3) [ > r (figure 2c). In other words, two unguarded triangles will be completely disjoint as in

case (3) or one is completely enclosed by the other as in cases (1) and (2).
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Figure 2: Relationship between two unguarded triangles

The level of an unguarded triangle is 1 if there is no other unguarded triangle completely enclosed
by it. The ones with one layer of triangles completely enclosed by it is of level 2. Higher level triangles
are defined similarly.

The order of removing the unguarded triangles follows the level number of the triangles. Triangles
of level ¢ will be removed before triangles of level (i + 1). If there are more than one unguarded

triangles of the same level, they can be processed in any order.
Before giving the details of the proof, we sketch how the guards will be moved. Consider the

lowest level, for each original unguarded triangle (vp, vq, v.), the guard at (vr—g,v,—1) , i.e., the one
on the right of the highest indexed vertex of the triangle, is moved one step to the left. This may
introduce one or more unguarded triangle(s), see figure 3. If there are more than one such unguarded
triangles due to the movement of the guard, consider each of them following the prescribed order.

For each of these newly unguarded triangle, (va, vs,vc), move the guard at (vy—g,vs—1) which is
on the right of the middle vertex one step to the left. Again, this may introduce more unguarded

triangles. Repeat the same procedure recursively. Lemma 3 will guarantee that the procedure will
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stop and all unguarded level-one triangles together with those newly introduced unguarded triangles
will be covered. Then, lemma 4 will show that a number of properties are satisifed by which allow

it to be applied to higher levels.

Figure 3: Unguarded triangles introduced by the algorithm

Lemma 3 Let (vp,vq,v;) be a level-one unguarded triangle. All triangles formed with vertices from
vp to v, will become guarded by following the above procedure.

Proof: To remove the original unguarded triangle, move the guard at (b,_k,v,_l) one vertex to
the left. This guard must exist since this is a level-one unguarded triangle. Vertex v._p will be
unguarded and this may then introduce one or more unguarded triangles. Since all vertices with
indices from r — k + 1 to r are covered by the moved guard, and the diagonal (v,, v,) will prevent
vertices vg4) to v,_; from forming triangles with other vertices, all newly introduced unguarded
triangles will have v,._; as the vertex with the highest index and will be formed by vertices v, to
vr—i (inclusive). All such triangles will be of different levels.

If there are more than one such new unguarded triangles, order them in the manner described
for the initial placement of guards and consider them in this order. Note that vertices v,_x—; and
vr_j are both unguarded. Let (vg, vy, vr—i) be the first of these triangles to be removed. The guard
at (vp—k, vv—1) is moved one vertex to the left. This guard must exist due to the initial placement
of the guards. By a similar reasoning, all unguarded triangles introduced in this step will be formed
by vertices between v, to vp— (inclusive) with vy_; as the vertex with the highest index. The whole
procedure is then repeated recursively. Either all new unguarded triangles will be removed or we
stop at an unguarded triangle, (v, vm, vn), with only one guard between v; and v, (m =1+ k+1).
In this case, the guard at (vi41, Ym-1) can be moved left by one vertex to (vi42, vm). The unguarded
triangle will be covered and no more unguarded triangles will be introduced since there are only
two unguarded vertices under the diagonal (v;, v,). The result follows. It is obvious that no guards
outside the diagonal (v,,v,) will be moved by this procedure as all unguarded triangles introduced
by the procedure are bounded by the diagonal (v4,v,). No guards between v, and v, need to be
moved because the original unguarded triangle, (vp,vq,v;), was at the innermost level. It will be
shown that all positions of the guards which is situated between v, and v, are final and will not be
moved again in all subsequent steps.

Lemma 4 All higher level unguarded triangles can be removed by following the same procedure

described above.

Proof: Assume all level-one unguarded triangles have been covered. Let (vp,v,,v,) be one of these
covered triangle. Before proceeding to the next level, the following properties are guaranteed:

Property 1 Verter v, is guarded.
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Property 2 Vertez vy4+1 ts guarded.

Vertex v, is guarded by the guard originally at (v,_k,v,—;) which is shifted to cover the un-
guarded triangle. Since v, was an unguarded vertex, v,,; must be guarded. Even it is enclosed by
another original level-one triangle (v,, vs, v:), the guard at (vy41, vr4+%) Was not moved as it is not
the guard on the right of the highest indexed vertex of that original level-one triangle. Thus both

properties are established.

From Property 2, vertex vr4; cannot be the vertex of a level-two unguarded triangle. However,
if vr41 is not enclosed by another level-one unguarded triangle, the guard at (v,4+1,vr+£) may be
shifted later to cover an unguarded triangle when handling level-two triangles. The vertex v,.4; may
then become the highest indexed vertex of a newly introduced unguarded triangle. It will never be
the middle vertex of a newly introduced unguarded triangle. According to the algorithm, only the
guard to the right of the middle vertex of a newly introduced unguarded triangle will be moved.
Also, vertex v, is guarded (by Property 1), it will not be a vertex of any unguarded triangle. This is
the reason why we choose to move the guard to the right of the highest indexed vertex of an original
unguarded triangle when resolving it. And if v, is a vertex of an unguarded triangle, only the guard
to the right of it may be moved. Therefore, the guards situated between v, and v, will never be
moved again in all subsequent steps. The part of the pocket between v, and v, can thus be cut off.

Let (va,vs,v:) be the first level-two unguarded triangle to be considered. If v. is a vertex of
a level-one unguarded triangle, v. must be covered (by property 1) and triangle (vg, vs, vc) will be
guarded. Otherwise, property 2 or the initial placement of guards will guarantee that the guard
(Ve—k,Ve—1) must exist, it can be shifted one vertex to the left and covered the triangle. As in
the case of level-one unguarded triangles, some new triangle(s) may which become unguarded. Let
(vd, Ve, vc—i) be the first such triangle to be considered, the above properties ensure that the guard
at (ve—k, ve) must exist. So, the procedure can be repeated recursively. By a similar argument as
in lemma 3, all new unguarded triangles together with the original level-two unguarded triangles
will be covered. All higher level unguarded triangles are covered similarly. The result of lemma 4
follows.

Lemma 5 To cover the exterior of an n-vertez simple polygon, [n/(k + 1)] k-consecutive verter
guards are always sufficient.

Proof: If no two consecutive hull vertices are unguarded, the region outside the convex hull must be
covered. By lemmas 3 and 4, the guards can be positioned to cover all triangles inside the pockets.
Only [n/(k + 1)] k-consecutive vertex guards are used, so the result follows.

Suppose there are two consecutive unguarded hull vertices, v; and v;, they must belong to the
same pocket. Before proceeding to cover the unguarded triangles, move the guard at (vj_x, vj—1)
one vertex to the left to cover the hull vertex v;. Vertex v;j_; will be unguarded and introduce
some unguarded triangles. All these triangles will not be enclosed by any of the original unguarded
triangles. It does not cause any problem to the proofs of lemmas 3 and 4 except when we start
to cover these triangles. Let (vp,v,,vj—) be one of these triangles. Instead of moving the guard
at (vj—2k,vj—k—1), move the guard at (vs—,v,—1) because the guard at (vj—2k,vj—k—-1) does not
exist. After all unguarded triangles introduced by the algorithm are covered, vertex v;_; will remain
unguarded. That is, it violates Property 1. However, since these triangles are the last to be removed,
the subsequent steps will not depend on this property. So, it will not affect the correctness of the
algorithm.

Theorem 1 [n/(k+1)] k-consecutive verter guards are sometimes necessary and always sufficient
to cover the ezterior of an n-vertex simple polygon.
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Proof: By lemmas 1 and 5, the theorem follows easily.

Corollary 1 [n/(k + 2)] k-consecutive edge guards are sometimes necessary and always sufficient

to cover the erlerior of an n-vertez simple polygon.

Proof: By lemmas 2 and 5, the corollary follows easily.

4 Conclusion

In this paper, the fortress problem is generalized by considering the k-consecutive vertex guards.
Tight bound of [n/(k+1)] is obtained. The result unifies the previous vertex guard and edge guard
results. As a by-product, the power of a k-consecutive edge guard is shown to be the same as that
of a (k + 1)-consecutive vertex guard in the worst case with respect to the fortress problem.

The same generalizaton can be investigated in the art gallery problem. However, when compared
to different variations of the fortress problem, the corresponding art gallery problem seems more
difficult. For example, the tight bounds for edge guards required in an art gallery, either orthogonal
or general, are still open [3, 4] while these edge guard fortress problems were settled already [6].
Also, we are applying the same generalization to the orthogonal fortress problem. Using the same
method, a tight bound of [n/(k + 2)] k-consecutive vertex guard is obtained when k is even [7]. For
the odd k, we conjécture that [n/(k + 3)| + 1 k-consecutive vertex guards are sometimes necessary
and always sufficient to cover the exterior of an orthogonal polygon.
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