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Abstract

We explore which vertex floodlights suffice to
cover any convex polygon of n vertices. Urru-
tia established that any convex polygon may
be illuminated by any three vertex floodlights
whose total angle is 7. We show that the gener-
alization of this result to k vertex floodlights is
false, even when all lights have the same angle,
w/k.

1 Introduction

Urrutia established this pleasing result: any
convex polygon may be illuminated by any
three vertex floodlights whose total angle is 7.1
A floodlight? is a light within an aperture lim-
ited to some fixed angle a; it can illuminate all
points with a cone whose apex angle is . A
vertez floodlight is one whose apex is located
at a polygon vertex. Urrutia’s result says that
if we are given a convex polygon P, and three
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angles whose sum is 7 (or greater), then flood-
lights of those angles may be assigned to dis-
tinct vertices of P and oriented so that the in-
terior of P is completely illuminated. A point
is illuminated if it lies in or on the boundary
of some floodlight cone, i.e., the light cones are
closed. .

It is natural to wonder if the following gen-
eralization holds:

QO0. Given a convex polygon P
of n vertices, a set of k¥ < n vertex
floodlights whose total angle sum is
m, can the lights always be assigned to
distinct vertices and oriented to fully
illuminate P?

The main result of this paper is that the an-
swer to QO is NO. We establish this by showing
that the special case of this question when all
floodlight angles are equal® also has a negative
answer:

Q1. Given a convex polygon P
of n vertices, a set of k < n vertex
floodlights each with angle o = 7 /k,
can the lights always be assigned to
distinct vertices and oriented to fully
illuminate P?

First we should note that if the floodlight an-
gles are not fixed in advance, the answer to Q0
is YES. More specifically, any convex polygon

3Posed as an open problem by the first author at the
Fourth MSI Computational Geometry Workshop, held
at Cornell University in Oct. 1994.



P may be covered by some set of vertex flood-
lights whose total angle is < 7: choose any ver-
tex whose interior angle a is strictly less than
m, and place one a-floodlight there. The same
holds true for the analog of Q1 if the number
of floodlights is fixed to £k < n but the angle
distribution is not: again place an a < 7 light
at some vertex, and distribute k£ — 1 lights each
of angle (m — ) /(k — 1) at other vertices.

These results are more difficult to establish
if the floodlights only illuminate points “clearly
visible” to the floodlight apex. Nevertheless we
claim without proof that these two results hold
for clear visibility as well.

The more interesting problems involve lights
whose apertures are fixed, and equal apertures
is an especially inviting case. The answer to
Q1 is YES for £ = 2: any convex polygon may
be illuminated by placing two 7 /2-lights facing
one another at opposite ends of any edge. And
Urrutia’s result shows that the answer to Q1
is YES for k£ = 3. Although we show that the
answer to Q1 is NO for general k, our proof only
establishes this for large k. It remains open at
this writing whether Q1 is true even for k = 4.

2 Fixed Assignment of Lights

We first consider the following easier question,
with fixed vertex assignments:

Q2. Given a convex polygon P of
n vertices, a fixed set of k < n vertex
floodlights with angles a1, a9,...ay,
where ) a; = 7, and a fixed assign-
ment of the lights to distinct vertices
of P, can the lights always be oriented
to fully illuminate P?

Given the tight constraints specified in Q2, it
is not surprising that its answer is NO. We
demonstrate this with the pentagon IP shown
in Fig. 1, and k = 2.

Theorem 2.1 The polygon IP shown in Fig. 1
cannot be covered by two lights, both with angle
/2, and assigned to vertices vy and v3. There-
fore the answer to Q2 is NO.

Figure 1: IP: vertex coordinates vy = (0,-2),
v = (47—1)a v2 = (5a0)7 3 = (471)7 V4 =
(0,2).

Proof: Suppose that the light L; at v; cov-
ers vg. This is no loss of generality because
the polygon is symmetric about the horizontal
line through ve. This requires L; to be turned
clockwise as far as possible, as illustrated in
the figure. Then this light does not illuminate
v4. So the light L3 at v3 must shine on vy,
which requires L3 to be turned clockwise as
far as possible, again as illustrated. Because
angle(v,v3,v4) = m/2+atan(1/4) ~ 104°, this
leaves points in a neighborhood of v; unillumi-
nated. O

One might wonder if the fact that £ < n
(2 < 5) in our example plays a significant role.
That it does not can be seen by changing the
example to k = 5 by assigning e-aperture lights
to vg, ve, and vyg for very small ¢ > 0, and
(m — 3€)/2 to v; and v3. For sufficiently small
€, IP cannot be covered by this assignment of
lights.

Rather the key to this example is the fixed
assignment between lights and vertices. With-
out this assignment, this example can be cov-
ered, because as we mentioned in the introduc-
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tion, two m/2-lights can cover any convex poly-
gon. Qur goal is to now diminish the role of the
assignment by using lights of equal angles, 7/k
each for k lights. We proceed in two stages,
the first of which permits £ > n and multiple
assignment of lights to the same vertex.

3 Multiple Equal Lights

Here is the specific question on which we next
focus:

Q3. Given a convex polygon P
of n vertices, a set of k vertex flood-
lights each with angle o = 7/k (per-
haps with £ > n), and a fixed assign-
ment of the lights to vertices of P, can
the lights always be oriented to fully
illuminate P?

We will show the answer to Q3 is again NO by
a modification of the example used to answer

Q2.

Theorem 3.1 The polygon IP in Fig. 1 can-
not be covered by k equal @ = w/k lights, for
sufficiently large odd k, under the following as-
signment: one a-light each at vg, vo, and vy,
and (k — 3)/2 «-lights each at vi and at v3.
Therefore the answer to Q3 is NO.

We choose k to be very large, so that a = /k
is correspondingly small. Note that v; and v3
are each assigned a total angle of 7/2 — 3a/2,
close to 7/2. The main task of the proof is to
show that the freedom to rotate independently
each of the many o-lights at these two vertices
is insufficient to cover IP.

Partition IP into a triangle T = (v, v2,v3)
and quadrilateral Q@ = (vo,v1,v3,v4). The
proof strategy is as follows. First we concen-
trate on T, and show in Lemma 3.2 that one of
v1 or v3 must use nearly 45° of its lights to shine
into T. The sense of “nearly” is controlled by
a. Lemma 3.3 then shows that what remains
from this light, and the entire other light, are
not enough to cover Q for sufficiently small a.

We will call a ray from vertex v black if the
lights at v do not cover it. Note a black ray
from v might be partially or wholly covered by
a light from some other vertex. The total an-
gular extent of black rays from v play an im-
portant role in the proofs to follow.

Lemma 3.2 For any € > 0, we may choose
a > 0 so that at least m/4 — € of either vy or
v3’s lights must shine into T'.

Proof: Suppose that less than 7/4 — € of v3’s
lights shine into T'. Since angle(vy,vs,v2) =
m/4, a total angle of at least € black rays em-
anate from v3 into . We now argue that there
must exist at least one black ray B that misses
both v3v; and v3vg by > €/2.

Suppose to the contrary that all € of the black
rays from v3 aimed into T either form an angle
with v3v;, or with v3vg, of strictly less than €/2.
This means that all the black rays from vz must
fall within the two open wedges shaded dark in
Fig. 2. But the sum of the angular extent of
these wedges is strictly less than €, contradict-
ing the fact that the black rays constitute > ¢
in angle.

V3

v2

vi

Figure 2: There must exist a black ray B that
aims outside of the two shaded ¢/2-wedges near
v] Or V2.

Let B be a black ray from v3 that aims at
least 8 > ¢/2 away from either v; or vo. Now
we argue that not much of B can be covered
by the single a-lights at vg, v2, and v4, so that
most of it must be covered by the lights at v;.
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For a fixed (3, the fraction of B’s length that
can be covered by an a-light at vo can be given
as small an upper bound as desired by choosing
o small. This can be seen as follows. First,
it is clear that a fixed a-light at vo can cover
more of B the closer B aims toward ve. (This
is the main reason for bounding B away from
vo by B.) So consider B oriented as close to
v3vg as permitted, at an angle of § from this
edge (aimed along the boundary of the shaded
€/2-wedge in Fig. 2). Second, it is clear that a
fixed a-light can cover more of this particular
B by aiming the light toward v3, the root of B.
Third, the fraction z of B that can be covered
in this situation approaches a/f as the angles
get small, as illustrated in Fig. 3. So for fixed
[, this fraction can be made as small as desired
by choosing a small.

Figure 3: For fixed 3, the portion of B covered
by the left a-light is roughly proportional to
the size of a. h = atana = btanf, so b/a =
tan o/ tan 3 &~ a/f for small angles.

The a-lights at vy and v4 cover even smaller
portions of B, since they cut B at a relatively
large angle. Therefore, given any fraction z >
0, we can ensure that the three single a-lights
cover together no more than z of B’s length,
regardless of where B lies in T', by selecting o
sufficiently small. Note that « is a function of
z and S.

Suppose now that no more than a fraction
z of B is covered. Then the remaining 1 —
portion of B must be covered by the lights at
v;. Note that because B must aim at least
B away from v;, this portion subtends some
positive angle < /4 from v;. If z = 0, B
subtends an angle of exactly m/4 from v;. For
z > 0, let 6(z) be the smallest angle subtended

by the 1 — z uncovered portion of B, over all
orientations of B, and over all possible ways
that the fraction z covered from the other lights
might be arranged along B. Although it would
not be easy to compute 6(z) for a given z, it is
clear that 6(z) — n/4 as ¢ — 0 (because when
z =0, all of B subtends 7/4).

Let €1(z) = 7/4 — 6(x); we know that at
least m/4 — €1(x) of v1’s lights must shine into
T. But we reached this conclusion from the
assumption that less than 7/4 — € of v3’s lights
shine into T'. Notice that for a fixed €, we can
make €; as small as desired by arranging for z
to be as small as necessary, which we can do
by choosing « sufficiently small. In particular
we can arrange for ¢ < €, in which case we
establish that at least w/4 — € of either v; or
v3’s lights aim into T'. 0O

Without loss of generality, we will assume
that nearly 45° of v;’s lights shine into T', which
leaves just a bit more than 45° to shine into Q.
We now show that this implies that  cannot
be covered.

Lemma 3.3 If at most /4 + € of vy ’s lights
shine into Q, with w/4 + € < atan(4/3) = 53°,
then we may choose a so that Q cannot be il-
luminated by the other vertex lights.

Proof: The angle at v3 in Q exceeds /2 by
¢ = atan(1/4) = 14°, so even if all of the
lights at v3 (whose total angle is 7/2 — 3a/2)
shine into @, there must be a total of ¢ +3c/2
black rays from vs in . By an argument
analogous to that used in the previous lemma,
this guarantees the existence of a black ray B
from v3 into @ that makes an angle of at least
B = (¢ + 3a/2)/4 with each of the segments
v3vg, v3v1, and vsvs. See Fig. 4. Now we argue
that not much of B can be covered by the sin-
gle a-lights at vy, v4, and ve, so that most of B
must be covered by the lights at v;.

The argument is similar to that used in the
previous lemma. Because B is at least 3 off
from v3vp and v3vs (and makes a much larger
angle with v3vg), the total fraction z of B that
can be collectively covered by those three ver-
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Vo

Figure 4: There must exist a black ray B that
aims outside of the three darkly-shaded wedges.
Only a small fraction z of B can be covered
by « lights from v, v4, and vo (lightly-shaded
beams). The remainder must be covered from
V1.

tex lights can be made as small as desired by
choosing a appropriately small.

Now suppose only a fraction z of B is cov-
ered by those three lights. The remaining 1 -z
portion of B must be covered by the lights at
v;. By the assumption of the lemma, only a
total light angle of 7/4 + € from v; is available
to shine into Q. The angle that B subtends
from v; in @ depends on B’s orientation, but
its minimum 6,, is larger than atan(4/3) =~ 53°,
which is the angle subtended from v; by the
segment v3vy (larger because B cannot aim di-
rectly along this segment). So atan(4/3) < Op,.
By the assumption of the lemma, v; has strictly
less than this minimum to offer: (w/4+ ¢) <
atan(4/3) < On,.

Let 6(z) be the smallest angle subtended by
the uncovered 1 — z portion of B from v;, over
all orientations of B and all possible layouts
of z along B. Again 6(z) might be difficult
to compute, but as z — 0, 8(z) — 0. Now
choose z (by choosing a small enough) so that

6(z) > /4 + €. Then the uncovered portion of
B subtends an angle greater than is available
at v1 for shining into @), and therefore () cannot
be covered. a

We can finally prove Theorem 3.1:

Proof: Choose ¢ = 5° in Lemma 3.2. That
lemma guarantees that at least 40° of v;’s light
shines into T". Let the o needed to achieve this
be art.

This leaves no more than 50° of v;’s light
for @, a value which satisfies the premises of
Lemma 3.3. Applying that lemma, we know
that by chosing o sufficiently small, we can
guarantee that the uncovered portion of B sub-
tends more than 50° from v;, and so ) can-
not be covered. Let the o determined by this
lemma be ag.

Finally, choose o = min(ar, ag). The corre-
sponding value of k is [7/a]. -0

Converting this existence proof to an explicit
counterexample would result in a large value of
k. However, it is quite likely that the theorem
is true for much smaller values of k; perhaps
for k = 45, a = 4°, the theorem holds. The
authors have not been successful in finding light
orientations that cover IP in this case. Fig. 5
shows one attempt.

4 One Equal Light per Vertex

We now strengthen the previous result by re-
stricting each vertex to receiving just one light,
and at the same time fixing k¥ = n. So in the fol-
lowing question, the notion of assignment has
disappeared entirely:

Q4. Given a convex polygon P of
n vertices, a set of n vertex floodlights
each with angle a = 7 /n, placed one
per vertex, can the lights always be
oriented to fully illuminate P?

Theorem 4.1 There is a polygon IP' of n ver-
tices that cannot be covered by n equal o = w/n
lights, one per vertex. Therefore the answer to

Q4 is NO.
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Figure 5: With k = 45, a = 180°/45 = 4°.
Vertices v; and v3 each are assigned 21 lights,
with a total angle of 84°, arranged in this case
to cover a wedge of that angle. The orienta-
tions of the lights at v, v2, and v4 shown are
insufficient to completely cover the dashed tri-
angular region left uncovered by the lights at
v1 and v3. Compare Fig. 1.

Proof: [Sketch] IP' is a modification of IP as
follows. The vertices v; and v3 are each re-
placed by j = (k — 3)/2 vertices, where k is a
number of lights for which Theorem 3.1 holds.
(So note that n here is the same as k in that
theorem.) The v3 replacements are laid out
collinear along the wv3vs edge of IP, bunched
closely within a small distance é of v3. Call

- them v3 = v3y,v3,,...,v3;. (See Fig. 6.) The.

v; replacements are placed symmetrically.
Now we follow the proof of Theorem 3.1, ar-
guing that for sufficiently small §, the “slack”
in that proof enables us to show that IP’ cannot
be covered. One difference is that there may be
no entirely black ray from v3 even when not too
much light from w3, aims into T. This is illus-
trated in Fig. 6. The important point is that
the w3, lights of IP’ cannot cover much more
than the v lights of IP.
O

Figure 6: The lights at the v3, vertices combine
to cover a portion of T, leaving some ray B
largely uncovered.

This sketch is unsatisfactory in that it only
shows the existence of counterexamples. Con-
structing an explicit counterexample from the
proof would be tedious and result in a large
number n of vertices, as well as vertices quite
close together. But from the evidence of Fig. 5,
we suspect that the theorem holds for n = 45.

5 Conclusion

Q4 is a specialization of Q1, which is a special-
ization of Q0. So the NO answer to Q4 implies
NO answers to Q1 and to Q0. We mentioned
in the Introduction that these questions remain
open for small values of k. We have shown that
four m/4 vertex lights suffice to illuminate any
quadrilateral (so the answer to Q4 is YES for
n = 4), but we do not yet know if four /4 ver-
tex lights suffice to illuminate all convex poly-
gons of n > 4 vertices, or if five 7 /5 lights suf-
fice to illuminate all convex pentagons.
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