Rectilinear Short Path Queries among Rectangular Obstacles

Danny Z. Chen*

Abstract

Given a set of n disjoint rectangular obstacles in the
plane whose edges are either vertical or horizontal, we
consider the problem of processing rectilinear approx-
imate shortest path queries between pairs of arbitrary
query points. Our goal is to answer each approxi-
mate shortest path query quickly by constructing a
data structure that captures path information in the
obstacle-scattered plane. We present a data structure
for rectilinear approximate shortest path queries that
requires O(n log? n) time to construct and O(nlogn)
space. This data structure enables us to report the
length of an approximate shortest path between two
arbitrary query points in O(log n) time and the actual
path in O(logn + L) time, where L is the number of
edges of the output path. If the query points are both
obstacle vertices, then the length and an actual path
can be reported in O(1) and O(L) time, respectively.
The approximation factor for the approximate short-
est paths that we compute is 3. The previously best
known solution to this problem requires O(n log® n)
time and O(n log® n) space to build a data structure,
which supports length and actual path queries respec-
tively in O(log” n) and O(log? n+ L) time (regardless
of the types of query points); the approximation fac-
tor for paths between arbitrary query points is 7.

1 Introduction

A short path connecting two points p and ¢ in an
obstacle-scattered plane is an obstacle-avoiding path
whose length is within a small factor ¢ of the length
of a shortest obstacle-avoiding path connecting p and
g in certain metric; such paths are called c-short
paths. A planar geometric object is rectilinear if
its boundary edges are either vertical or horizon-
tal. In this paper, we consider the following short

*Department of Computer Science and Engineering, Uni-
versity of Notre Dame, Notre Dame, IN 46556, U.S.A. E-mail:
chen@cse.nd.edu. Part of this research was done while the
author was visiting the Max-Planck-Institut fiir Informatik in
Saarbriicken, Germany.

tDepartment of Computer Science and Engineering, Uni-
versity of Notre Dame, Notre Dame, IN 46556, U.S.A. E-mail:
Kevin.S.Klenk.10nd.edu.

Kevin S. Klenk!

path query problem: Given a set of n rectangu-
lar obstacles in the plane that are rectilinear and
pairwise disjoint, report rectilinear obstacle-avoiding
short paths (or their lengths) between pairs of ar-
bitrary query points. Our goal is to answer each
short path query quickly by constructing a data struc-
ture that captures path information in the obstacle-
scattered plane. Clearly, the problem of computing
short paths is closely related to the problem of com-
puting shortest paths, which appears in many appli-
cation areas (such as robotics and VLSI design) and
plays vital roles in solving various optimization prob-
lems. Shortest obstacle-avoiding path queries often
arise in situations where short routes between many
pairs of different locations or between two constantly-
changing locations are desired. For example, a police
car patrolling an area must quickly get to the location
where an accident has occurred.

We focus on environments that contain multiple
obstacles. Considerable work has been done on com-
puting rectilinear shortest paths among various types
of obstacles in the plane (e.g., [1,2,5,7,8,10,11,13-
15,17,18,21,22]) and in higher dimensional spaces
(e.g., [9,23]). However, very few results are known
for answering rectilinear shortest path queries be-
tween arbitrary query points. In particular, Atallah
and Chen [1] presented a data structure for rectilin-
ear shortest path queries among disjoint rectangu-
lar obstacles in the plane; their data structure re-
quires O(n?) time and space to construct and en-
ables processing a length query in O(logn) time.
ElGindy and Mitra [11] later considered the same
problem as [1]; their data structure requires O(n!-?)
time and space to construct and enables processing
a length query in O(y/n) time. Iwai, Suzuki, and
Nishizeki [13] presented a data structure for recti-
linear shortest path queries among rectilinear obsta-
cles; the data structure is built in O(n? log®n) time
and O(n? log® n) space, and can be used to answer a
length query in O(log® n) time. Very recently, Chen,
Klenk, and Tu [5] designed techniques for rectilin-
ear shortest path queries among weighted rectilinear
polygonal obstacles (resp., arbitrary polygonal obsta-
cles); their data structure requires O(n? log® n) time
and space to build and enables processing a length
query in O(log® n) (resp., O(logn)) time.

- 169 -

There is also related work on short path queries in
environments with multiple obstacles. Clarkson [6]
constructed in O((n logn)/e) time a data structure of
size O(n/e), which can be used to process queries of
Euclidean (1 + ¢€)-short paths in O(nlogn+mn/e) time
each, for any given e satisfying 0 < € < 1. It is possible
to extend Clarkson’s results such that an O(n?+n/e)
space data structure is constructed in O(n%logn +
n?/e) time; each length query can then be answered
in O((logn)/e + 1/€%) time. Chen [4] recently pre-
sented a technique for Euclidean (6 + €)-short path
queries. Chen’s data structure requires O(nlogn +
n/e) space and O(q%/2/log!/? g + (nlogn)/e) time to
construct, and each length query can be answered
in O((logn)/e + 1/€?) time, where ¢, 1 < ¢ < n, is
the minimum number of faces needed to cover all the
vertices of some n-vertex planar graph.

Mitra and Bhattacharya [19] first studied rectilin-
ear short path queries among disjoint rectangular ob-
stacles (i.e., the problem of this paper). They built
in O(nlog®n) time a data structure of O(nlog®n)
space; using this data structure, the length and an ac-
tual short path between any two query points can be
reported respectively in O(log? n) and O(log?n + L)
time, where L is the number of edges of the output
path. The approximation factor for the short paths
they computed is 7.!

In this paper, we present a data structure for recti-
linear short path queries that takes O(nlog?n) con-
struction time and O(nlogn) space. This data struc-
ture enables us to report the length of a short path
between two arbitrary query points in O(logn) time
and an actual path in O(logn + L) time, where L is
the number of edges of the output path. If the query
points are both obstacle vertices, then the length and
an actual path can be reported in O(1) and O(L)
time, respectively. (Note that in [19], the querying
time for obstacle vertices is the same as that for arbi-
trary points.) The approximation factor for the short
paths that we compute is 3. Our result makes use of
several different data structure techniques and geo-
metric observations.

We will discuss only the algorithms and data struc-
ture for reporting the lengths of short paths because
our solutions can be easily modified for actual short
paths in the same complexity bounds.

l1We learned recently that Mitra and Bhattacharya have
improved their approximation factor to 3, within the same time
and space complexities as in [19].

2 Preliminaries

The set of n disjoint rectangular obstacles is denoted
by R. The vertex set of R is denoted by Vg.

We use p; and p, to denote the two coordinates
of a point p. A point p is strictly below (resp., to
the left of) a point ¢ iff p, = ¢, and p, < gy (resp.,
Py = gy and p; < ¢z); we can equivalently say that
q is strictly above (resp., to the right of) p. In the
L; metric, the distance between two points p and ¢
in the plane is d(p,q) = |pz — gz + |py —qy|- A
line segment with endpoints p and ¢ is denoted by
pq (= @p). The length of a path C is the sum of
the lengths of its constituent segments. SP(p,q) will
denote a shortest path between two points p and gq.
From now on, all paths (shortest or otherwise) are
assumed to be obstacle-avoiding.

The geodesic Voronoi diagram of points
mi,ma,...,m, among the set Vg is a partition
of Vg into subsets Hy, Hs,...,H,, such that m; is
associated with H;, Ui, H; = Vg, and for each
obstacle vertex v € H;, v is geodesically nearer to
m; than to any m; # m;.

A path is said to be monotone with respect to the
z-axis (resp., y-axis) iff its intersection with every
vertical (resp., horizontal) line is a contiguous por-
tion of that line. We call a path a staircase if it
is monotone with respect to both the z- and y-axis.
Note that a staircase between two points p and g is a
shortest path SP(p, q) since its length equals d(p, q).
A staircase is unbounded if it starts and ends with a
semi-infinite segment, i.e., a segment that extends to
infinity on one side.

The notion of staircase separators was introduced
in [1] and is very helpful in the design of divide-and-
conquer type algorithms for problems on rectangles.
The following lemma from [1] proves the existence
and important properties of a staircase separator.

Lemma 1 (Atallah and Chen [1]) In O(nlogn)
time, it is possible to compute an unbounded stair-
case S, which partitions a set R of n disjoint rectan-
gles into two subsets Ry and Ry such that the follow
properties hold:

1. S does not intersect the interior of any rectangle
in R.

2. Each of Ry and R contains no more than Tn/8
rectangles of R.

3. S consists of O(n) line segments.

The following structures were introduced in [1].
For a point p, the Northwest path of p (denoted by
the shorthand NW(p) where ‘N’ is the mnemonic for

-170 -

‘North’ and ‘E’ for ‘East’) is the path to infinity ob-
tained by starting at p and going north until reach-
ing an obstacle, at which point we go west along the
obstacle’s boundary until we clear the obstacle and
are able to resume our trip north. One can in this
way define an XY (p) path and a YX(p) path for any
X € {N,S} and Y € {E,W} (where ‘S’ and ‘W’ are
mnemonics for ‘South’ and ‘West’ respectively). An
XY (p) path starts at p and goes in the X direction
whenever it can, and uses a “go in the Y direction”
policy for getting around obstacles. A YX(p) is de-
fined similarly.

It has been shown in [1] that the union of the seg-
ments of the NW(v) paths, for all v € Vg, forms a
forest (this we call the NW-forest); this forest con-
sists of O(n) vertical and horizontal segments. Fur-
thermore, this forest can be computed in O(nlogn)
time [1]. We add a point at infinity as the root for all
paths NW(v), v € Vg, thus obtaining from the for-
est a tree which we call the NW-tree. For any point
p in the plane, it is easy to show that the unique
path NW(p) can be obtained in O(logn) time from
the NW-tree. NW(p) so obtained is represented im-
plicitly; i.e., the path NW(p) consists of a vertical
segment, possibly a horizontal segment and a path
in the NW-tree. Clearly, NW(p) has O(n) segments.
For each XY € {NW, SE, SW,EN, ES, WN, WS}, the
XY-forests and XY-trees can be defined similarly.

A point m, on a staircase separator S is a verti-
cal (resp., horizontal) projection point of an obstacle
vertex v if and only if 7,7 is a vertical (resp., horizon-
tal) line segment that does not intersect the interior
of any obstacle. Let M be the set of vertical and
horizontal projection points of Vg on S. The follow-
ing lemma, proved in [1] and also in [19], shows how
a staircase separator controls certain shortest paths
between opposite sides of the separator.

Lemma 2 Let S be a staircase separator that di-
vides the set R of rectangular obstacles into two sub-
sets Ry and Ry. Then for any obstacle vertices
hi € Vg, and hj € Vy,, there ezists a shortest path
SP(hi, h;) which contains a horizontal or vertical pro-
jection point of M.

Consider two arbitrary obstacle vertices h; and h;
of R which lie on opposite sides of the staircase sepa-
rator S. Among all the points of M, let my,m; € M
be the geodesically nearest points of h; and h; re-
spectively. Note that SP(my,m;) can be taken along
the staircase S. The following lemma, due to Mitra
and Bhattacharya [19], is a key to computing short
paths.

Lemma 3 (Mitra and Bhattacharya [19]) The
length of the path Q = SP(h;,m;) U SP(m,m;) U

SP(mu, hj) between h; and h; is at most three times
the length of a shortest path SP(h;, h;).

3 Construction of the Data
Structure

Our data structure for rectilinear short path queries
consists of several key components: (1) two planar
point-location structures that allow us to perform
ray-shooting operations in the vertical and horizontal
directions; (2) a structure that smplicitly maintains
the length of a short path between every pair of ob-
stacle vertices in Vg; (3) the XY -trees as described in
Section 2 and additional structures for certain oper-
ations on these trees. The two planar point-location
structures are taken from the data structure of [1]
and can be constructed in O(nlogn) time and O(n)
space. Hence our discussion focuses on the second
and third components of the data structure.

Mitra and Bhattacharya [19] presented a data
structure for implicitly maintaining rectilinear short
paths between obstacle vertices. They used the fol-
lowing algorithm to build their data structure.

1. Compute the staircase separator S that parti-
tions R into two subsets R; and R, (Lemma 1).

2. Compute the set M of O(n) vertical and hori-
zontal projection points of Vi on S.

3. Construct the geodesic Voronoi diagram of M
among Vpg.

4. Perform this procedure recursively on R; and R,
until each subset contains one obstacle.

Mitra and Bhattacharya implemented the above al-
gorithm in O(n log® n) time and O(n log? n) space.

To construct our structure for implicitly maintain-
ing lengths of short paths between obstacle vertices,
we modify the above algorithm of Mitra and Bhat-
tacharya [19]. Note that both Steps 1 and 2 can be
performed in O(nlog n) time and O(n) space [1]. Step
3 can be done also in O(nlogn) time and O(n) space
by simply using Mitchell’s algorithm [17, 18] for com-
puting the geodesic Voronoi diagram of a set of sites
in the L; plane with rectilinear obstacles.

Let T be the recursion tree for the modified algo-
rithm; that is, the root of T' corresponds to the “top-
level” recursive call (the one associated with R), the
children of the root correspond to the recursive calls
for Ry and Ry, and so on. It is easy to further mod-
ify the algorithm so that the information (separators,
geodesic Voronoi diagrams, etc) produced by each re-
cursive call remains stored in T even after that call

returns. We assume that this modification has al-
ready been done, so that each node v of T stores the
vertices of the obstacle set R, C R associated with
v, the staircase separator S, partitioning R,, and the
geodesic Voronoi diagram of M, (on S,) among Vg, .

Lemma 4 The recursion tree T can be constructed
in O(nlog®n) time and O(nlogn) space.

Proof: It is easy to see that the recurrence rela-
tion T'(n) for the time complexity of the algorithm is
T(n) < T(an)+ T((1 — a)n) + bnlogn, where 1/8 <
a < 7/8 and b is some positive constant; thus T'(n) =
O(nlog®n). The space taken by the tree T and all
the information stored with its nodes obeys the re-
currence relation S(n) < S(an) + S((1 — a)n) + cn
for 1/8 < a < 7/8 and some positive constant c; thus
S(n) = O(nlogn).]

Processing a length query between two obstacle
vertices requires O(log?n) time in [19]. We take a
different approach for length queries between obsta-
cle vertices and handle each such query in O(1) time.
To achieve this goal, we need to preprocess the recur-
sion tree T so that we can quickly answer the follow-
ing kind of queries: “Given any two nodes a,b € T,
return the lowest common ancestor of a and b in T.”
It is well-known that the lowest common ancestor
queries in a tree can be answered by preprocessing
the tree in O(n) time and space, so that each query
takes O(1) time [12, 20]. This completes our discus-
sion of the second component of our short path data
structure.

For the third component of our short path data
structure, we build all the XY -trees (Section 2) as
described in [1]. However, the data structure in [1]
for the XY -forests stores the XY -path from each ob-
stacle vertex in Vi to the point at infinity ezplic-
itly; this storage required O(n?) space (but this did
not affect the overall efficiency of the algorithm [1]).
Atallah and Chen [1] used this explicit representa-
tion of XY -forests so that they could perform binary
searches on the XY -path of each vertex in Vg. We
would still like to be able to perform binary searches
on the XY-paths of obstacle vertices; however, we
are not willing to pay the space penalty as in [1].
Towards this goal, we preprocess each XY -tree Z so
that the following type of queries can be quickly an-
swered: “Given a vertex v in Z and a positive integer
i, find the i-th vertex on the path in Z from v to
the root of Z.” Such queries are called level-ancestor
queries by Berkman and Vishkin [3], who gave a lin-
ear time algorithm for preprocessing rooted trees so
that the level-ancestor queries can be answered in
O(1) time each. This preprocessing allows us to per-

form the same binary searches on XY-paths that are
implicitly represented in XY -trees without the space
penalty caused by using a separate representation for
each XY-path. The details of our querying proce-
dures will be given in the next section.

The result of this section is summarized in the fol-
lowing theorem.

Theorem 1 The data structure for rectilinear ap-
prozimate shortest path queries among n disjoint rect-
angular obstacles can be constructed in O(nlog®n)
time and O(nlogn) space, with an approzimation
factor of 3.

4 Short Path Queries

Our idea for computing a short path between two
arbitrary query points is to reduce such a query to
queries between O(1) vertices in Vg. In order to
do this, we will first present a method for perform-
ing length queries between vertices in Vg (hence-
forth called “Vg-Queries”), which can be performed
in O(1) time each (an improvement of a log n factor
over the previously best known result [19]). We will
next show how an arbitrary query can be reduced to
O(1) Vg-Queries in O(logn) time.

4.1 Vi-Queries

The method for answering a Vg-Query between two
vertices h; and h; in Vg is as follows:

1. Determine the node v in the recursion tree T
such that the staircase separator S, associated
with v splits for the first time h; and h; into
opposite sides of the separator (i.e., for every
proper ancestor u of v in T, h; and h; belong
to the same side of the separator S,).

2. Use the geodesic Voronoi diagram stored in the
node v of T to report the length of a short path
between h; and h; based on Lemma 3.

Note that the above procedure, Vz-QUERY, deter-
mines S, (Step 1) in a completely different manner
from [19]. In [19], S, was identified by performing
O(logn) binary searches along a path in their recur-
sion tree, one at each level of the tree. We simply use
the observation that S, is stored at the lowest com-
mon ancestor of the leaves that store h; and h; in
T. Therefore, after preprocessing the recursion tree
T in O(n) time and space, we can find the correct
Sy in O(1) time by using a lowest common ancestor
query [12,20]. From Lemma 3, we know the approx-
imation factor of the short path that we compute is
3. Thus we have the following lemma.

-172-

VSE(@)

Figure 1: A leftward ray-shooting from an arbitrary
point p.

Lemma 5 The procedure Vg-QUERY computes the
length of an approzimate shortest path between any
two vertices h; and hj of Vg in O(1) time, with an
approzimation factor of 3.

4.2 Queries between Two Arbitrary
Points

In this subsection, we relax the restriction of both the
query points being vertices in Vg. Given the proce-
dure for Vg-Queries, we are able to handle a length
query between two arbitrary points in the plane in
O(logn) time. Our solution for length queries be-
tween arbitrary points is based on several geometric
observations. We begin with the case of queries with
only one arbitrary query point, the other query point
being in Vg, and then we later extend it to the case
of two arbitrary query points. The approximation
factor that we obtain is 3.

Suppose we want to compute the length of a short
path between an arbitrary point p and an obstacle
vertex v. WLOG, assume p is in the first quarter of v
(the other cases can be handled similarly). Then the
procedure, called ONE-ARBITRARY-QUERY, for such
a query is as follows:

1. Let L be the horizontal line passing p. Compute
the intersection of L and NE(v). This can be
done by performing a binary search for p, on
the path NE(v).

2. If pis to the right (resp., left) of L N NE(v), then
based on the observations of [10], a shortest p-
to-v path is monotone with respect to the z-axis
(resp., y-axis). WLOG, assume that p is to the
right of L N NE(v) (see Figure 1).

3. Perform a ray-shooting operation: The ray starts
at p and goes horizontally to the left of p. If the

ray intersects NE(v) before it hits an obstacle,
then a shortest p-to-v path is found (first from
p to L N NE(v) and then along NE(v) to v);
otherwise, the ray hits an obstacle edge without
crossing NE(v). Let v; and v, be the vertices of
that obstacle edge (Figure 1).

4. Based on the observations of [1, 10], a shortest
p-to-v path must go through one of v; and vs.
Hence the length of a short p-to-v path can be
taken as the minimum of the length of a short v;-
to-v path plus d(p,v;) and the length of a short
vz-to-v path plus d(p,v2). The queries on short
v1-to-v and ve-to-v paths are clearly Vz-Queries.

We first show the claim that the length of the short
p-to-v path so computed is within a factor 3 of the
length of a shortest p-to-v path. WLOG, assume a
shortest p-to-v path goes through v,. Note that the
length of the short p-to-v path that we compute can-
not be longer than the length of a short v;-to-v path
plus d(p,v;), and that there is no approximation in
the distance d(p,v;). But the length of the short v;-
to-v path that we compute is within a factor 3 of
the length of a shortest v;-to-v path (by Lemma 5).
Hence the claim follows.

We now show that the procedure ONE-
ARBITRARY-QUERY can be performed in O(logn)
time. Given L N NE(v), Step 2 can be easily
done in O(1) time. Step 4 also takes O(1) time
based on Lemma 5. The ray-shooting in Step 3
requires O(log n) time by using the horizontal planar
point-location structure (i.e., the first component
of our short path data structure). Hence the key is
Step 1 that finds L N NE(v). To obtain L N NE(v)
in O(logn) time, we perform a binary search on the
path NE(v). It is easily seen that the level-ancestor
queries on the NE-tree enable us to perform an
O(logn) time binary search on NE(v). This is
because by using a level-ancestor query, we can
access in O(1) time any ancestor of v in the NE-tree,
without having the path NE(v) stored explicitly in a
separate array.

A length query between two arbitrary points p and
q is reduced in O(logn) time to two length queries,
each of which is between one arbitrary point and
one obstacle vertex, as follows. WLOG, assume p
is in the first quarter of q. We first compute the
path NE(g). This can be obtained in O(logn) time
by performing an upward ray-shooting from ¢ and
then taking (implicitly) the NE(u) path from the NE-
tree, where u is the right vertex of the obstacle edge
whose interior is hit by the upward ray from g. Next,
by using a procedure similar to the procedure ONE-
ARBITRARY-QUERY, we reduce the computation of a

-173 -

short p-to-q path to computing two short ¢-to-v; and
g-to-vs paths, each of which can then be handled by
the procedure ONE-ARBITRARY-QUERY, with both
v1 and v; being obstacle vertices. The time analy-
sis and correctness proof of this query procedure are
similar to those for the procedure ONE-ARBITRARY-
QUERY.

Our result of this subsection is summarized in the
following theorem.

Theorem 2 FEach query for the length of an approz-
imate shortest path between two arbitrary points can
be processed in O(logn) time, with an approzimation
factor of 3.

References

[1] M. J. Atallah and D. Z. Chen. “Parallel rectilin-
ear shortest paths with rectangular obstacles,” Com-
putational Geometry: Theory and Applications, 1
(1991), pp. 79-113.

[2] M. J. Atallah and D. Z. Chen. “On parallel rectilin-
ear obstacle-avoiding paths,” Computational Geome-
try: Theory and Applications, 3 (1993), pp. 307-313.

[3] O. Berkman and U. Vishkin. “Finding level-
ancestors in trees,” Tech. Rept. UMIACS-TR-91-9,
University of Maryland, 1991.

[4] D. Z. Chen. “On the all-pairs Euclidean short path
problem,” Proc. of the Sizth Annual ACM-SIAM
Symp. on Discrete Algorithms, San Francisco, Jan-
uary 1995, pp. 292-301.

[5] D. Z. Chen, K. S. Klenk, and H.-Y. T. Tu. “Shortest
path queries among weighted obstacles in the rec-
tilinear plane,” to appear in the Eleventh Annual
ACM Symp. on Computational Geometry, Vancou-
ver, Canada, June 1995.

[6] K. L. Clarkson. “Approximation algorithms for
shortest path motion planning,” Proc. 19th Annual
ACM Symp. Theory of Computing, 1987, pp. 56-65.

[7] K. L. Clarkson, S. Kapoor, and P. M. Vaidya. “Rec-
tilinear shortest paths through polygonal obstacles
in O(n(logn)?) time,” Proc. 3rd Symp. on Compu-
tational Geometry, 1987, pp. 251-257.

[8] K. L. Clarkson, S. Kapoor, and P. M. Vaidya. “Rec-
tilinear shortest paths through polygonal obstacles
in O(nlog®?n) time,” submitted for publication.

[9] M. de Berg, M. van Kreveld, and B. J. Nils-
son. “Shortest path queries in rectangular worlds of
higher dimension,” Proc. 7th Annual ACM Symp. on
Computational Geometry, 1991, pp. 51-59.

P. J. de Rezende, D. T. Lee, and Y. F. Wu. “Rec-
tilinear shortest paths in the presence of rectangles
barriers,” Discrete Comput. Geom., 4 (1989), pp. 41-
53.

[10)

[11] H. ElGindy and P. Mitra. “Orthogonal shortest route
queries among axes parallel rectangular obstacles,”
Int. J. of Comput. Geom. and Appl., 4 (1) (1994),
pp. 3-24.

D. Harel and R. E. Tarjan. “Fast Algorithms for find-
ing nearest common ancestors,” SIAM J. Comput.,
13 (1984), pp. 338-355.

M. Iwai, H. Suzuki, and T. Nishizeki. “Shortest path
algorithm in the plane with rectilinear polygonal ob-
stacles” (in Japanese). Proc. of SIGAL Workshop,
Ryukoku University, Japan, July 1994.

(12]

(13]

[14] R. C. Larson and V. O. Li. “Finding minimum rec-
tilinear distance paths in the presence of barriers.”

Networks, 11 (1981), pp. 285-304.

D. T. Lee, T. H. Chen, and C. D. Yang. “Short-
est rectilinear paths among weighted obstacles.” In-
ternational Journal of Computational Geometry and
Applications, 1 (2) (1991), pp. 109-124.

K. Mehlhorn. “A faster approximation algorithm for
the Steiner problem in graphs,” Inform. Process.
Lett., 27 (1988), pp. 125-128.

J. S. B. Mitchell. “L; shortest paths among polyg-
onal obstacle in the plane,” Algorithmica, 8 (1992),
pp. 55-88.

[18] J. S. B. Mitchell. “An optimal algorithm for shortest
rectilinear path among obstacles.” First Canadian
Conference on Computational Geometry, 1989.

[15]

(16]

[17)

[19] P. Mitra and B. Bhattacharya. “Efficient approxi-
mation shortest-path queries among isothetic rectan-
gular obstacles,” Proc. 3rd Workshop on Algorithms

and Data Structures (WADS’93), 1993, pp. 518-529.

B. Schieber and U. Vishkin. “On finding lowest com-
mon ancestors: Simplification and parallelization,”
SIAM J. Comput., 17 (1988), pp. 1253-1262.

[21] Y. F. Wu, P. Widmayer, M. D. F. Schlag, and C.
K. Wong. “Rectilinear shortest paths and minimum
spanning trees in the presence of rectilinear obsta-
cles.” IEEE Trans. on Computers C-36 (1987), 321-
331.

C. D. Yang, T. H. Chen, and D. T. Lee. “Short-
est rectilinear paths among weighted rectangles.”
Journal of Information Processing, 13 (4) (1990),
pp. 456-462.

C.-K. Yap and J. Choi. “Rectilinear geodesics in
3-space,” to appear in the Eleventh Annual ACM
Symp. on Computational Geometry, Vancouver,
Canada, June 1995.

(20)

(22]

23]

-174 -

