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Abstract

Consider a polygon P and two points p,q € P. Sup-
pose that to move from p to g, we can travel along the
edges of P or through the interior of P. Assume that
the speed at which we can travel along the edges of P
is one unit per second, and the travel speed through
the interior of P is 1/s units per second (s > 1).
The problem consists of finding the shortest path be-
tween p and ¢q. We solve this problem in O(n) time
for convex polygons. For simple polygons, we show
two algorithms. The first takes O(n logn) query time
with O(nE logn) preprocessing (where E is the num-
ber of edges in the visibility graph of P) and O(n?)
space, and the second algorithm runs in O(E logn)
query using O(F) preprocessing and space.
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1 Introduction

Suppose that a traveler living in a polygonal world
represented by a simple polygon P wants to move
from a location p to another location ¢ and he may
do so by driving his jeep on highways built along the
edges of P, or taking shortcuts through fields. Our
problem is to find the fastest route from p to g.

The speed of travel on the boundary is assumed
one unit while the speed in the interior is 1/s where
s > 1. In this paper we present algorithms to solve
this problem for the cases when P is a simple poly-
gon or a convex polygon. For the case where P is
a simple polygon, we give two algorithms, The first
one finds the shortest path from p to ¢ in O(nlogn)
time, assuming O(nE log n) preprocessing where E is
the number of edges of the visibility graph of P, and
O(n?) space. The second one has a query time of
O(Flogn) with O(FE) preprocessing and space. For
convex polygons, we solve the problem in O(n) time.
Our algorithms return a shortest path (there can be
more than one path with the same low cost). For an
example, see Figure 1.

A simpler version of this problem has been solved
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Figure 1: A simple example

for years: when the costs of traveling inside and on
the boundary are equal (s = 1), ie. the problem of
finding the shortest path inside the polygon. In that
case there is a unique shortest path which can be
found in linear time [Guib87]. Notice also that if
s < 1 then the resulting shortest path is the same
as when s = 1 except that we never actually travel
on the edges, but at distance € from them (e is an
arbitrarily small constant).

A more complex version of this problem has been
looked at by Mitchell and Papadimitriou [Mitc87,
Mitc91] where traveling is done in a polyhedral ter-
rain in which each of its faces has an associated travel
cost. However, the time complexity associated with
this problem is extremely high (O(n®L) where L is
the precision). This problem allows multiple shortest
paths with equal cost.

The problem studied here has applications in Ge-
ographic Information Systems (GIS). Here the poly-
gon’s boundary represents part of a road network,
and the inside is a field, or other terrain which can
be traveled on. This terrain is considered to have a
uniform travel cost. This kind of algorithm can be
used for any kind of travel (foot, all terrain vehicle,
horse, dog sled, ...) where a road is defined as a nar-
row and long surface on which the traveling costs less
than on the surrounding terrain. This problem is es-
pecially important in emergency situations but it can
also be used for a range of traveling problems.

-175 -



This paper is structured as follows: in Section 2,
some basic properties of shortest paths are obtained.
In Section 3 we study the case when P is a simple
polygon. Then, in Section 4 we study the case when
P is convex. Proofs for some lemmas can be found in
the full paper.

2 Preliminaries

In this section we see definitions and lemmas which
will be useful through the paper. A polygon will be
assumed to have its vertices labeled vg, ...,v5-1 In
such a way that v; is adjacent to vi41,:=0,...,n—1,
addition taken modn.

An ear of a polygon P is a triangle with vertices
Vi—1, Vi, Vi+1 € P such that v;_ is visible from v;4;.
The angle of an ear is the angle between the two
edges of the polygon which form the ear. Convex
polygons with n vertices have n ears, and in general,
any polygon has at least two ears.

If we assume that traveling one unit of distance
within the interior of P takes s seconds while travel-
ing the same distance on a edge of P takes one second,
it is natural to assign the following weight to a line
segment contained in P:

Given two points z, y € P joined by a line seg-
ment [(z,y) totally contained in P, we associate to
I(z,y) a weight w(l(z,y)) = |l(z,y)| * s if the inte-
rior of I(z, y) is totally contained in the interior of P;
if both z and y are contained in an edge of P then
w(l(z,y)) = |l(z,y)| where |I(z,y)| is the Euclidean
distance between z and y. If I(z,y) is totally con-
tained in the interior of P, it will be called a shortcut;
this follows the natural intuition that we will travel
from u to v through the interior of P only if it guaran-
tees us a shorter traveling time than traveling along
the edges of P.

Consider two points p and ¢ of P, and a rectilinear
path H(p,q) from p to ¢ contained in P, that is a
chain of line segments starting at p and ending at
g. Clearly H(p,q) can be decomposed into a set of
k line segments [y, ..., Iy such that the interior of
each [ is totally contained in the interior of P or it is
totally contained in an edge of P. If the interior of
l; is contained in the interior of P, [; will be called a
shortcut of H(p,q).

We now associate to H(p, q) a weight:

W(H(p,q)) = w(ls) + . ..+ w(l)

. We say that H(p,q) is an optimal p-¢ path if for
any other rectilinear chain H'(p, ¢) from p to ¢, we
have W(H(p,q)) < W(H'(p,q))-

We now give some lemmas that describe basic
properties of optimal p-¢ paths. The following result
was shown in [Mitc91):

Lemma 1 Ifa shortcut of an optimal p-q path has an
endpoint on an edge e of P, then the shortcut and e
meet at an angle & = sin~(1/s) to the perpendicular
of the edge, where 1/s is the cost of travel inside the
polygon. (0 < a <m/2).

Note that this follows Snell’s Law of Refraction.

We define edge-to-edge shortcuts to be shortcuts
with both endpoints contained in the interior of edges
of P. The next lemma is fundamental to our paper:

Lemma 2 Given any two poinis p, ¢ € P, there al-
ways erists an optimal p-q path with no edge-to-edge
shortcuts.

Proof: Let [ be an edge-to-edge shortcut of a
shortest p-¢ path . We now show that there is an
equally expensive p-q¢ path which does not include l.
Let e; and e; be the edges of P containing the end-
points of I. By Lemma 1, [ forms angles of size 7/2—a
with e; and e;. Two cases arise:

1. The angle formed by the lines containing e; and
e is equal to 2a.

2. e; and e, are parallel.

For case 1, assume w.l.0.g. that [ is horizontal and
that the lines containing e; and e intersect below .
Consider the diagonal I of P parallel to ! and below it,
with both endpoints in e; and es such that I contains
a vertex of P. Then it is easy to see that traveling
from one endpoint of ! to the other along [ is equally
expensive as traveling between them along e;, I’ and
e2. This generates another shortest path from p to ¢
avoiding .

A similar analysis can be done for the case when
e1 and e; are parallel.

To simplify the algorithm and the proof, we only
consider the paths which have at least one endpoint
at a vertex of the polygon. This is permitted since
the cost of traveling between edges which have a dif-
ference in angle of 2a, or between parallel edges, is
the same wherever we take the shortcut. To get an
equally expensive path, we therefore move one end-
point of the shortcut to a vertex. The path length
will remain unchanged. We therefore do not need to
consider edge-to-edge shortcuts.

Lemma 3 If the angle of an ear is less than 2 and
neither p nor q are contained in the ear, no optimal
p-q path will enter the interior of the ear, so we may
as well delete 1t.
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Figure 2: O(n?) shortcuts to edges

Proof: As shown in the proof of Lemma 2, it is
equally expensive to go around on an ear of angle 2a
than to cut across it. It is easy to see that if the
angle is smaller than 2q, it is preferable to cut across
the ear. Obviously, when the angle is larger, it is less
expensive to travel along the edge.

3 The Simple Polygon Case

In this section we sketch two algorithms to find short-
est paths between two points p and ¢ in a simple poly-
gon P with n vertices. Our first algorithm uses O(E)
preprocessing and space, and O(E'logn) query time,
where E is the number of edges in the a-visibility
graph of P. Our second algorithm uses O(nE logn)
preprocessing, O(n?) space, and answers queries in
O(nlogn) time.

The visibility graph is Q(n?) in size. In Figure 2
we see that the n/2 bottom vertices each have n/2
visible edges on top, yielding O(n?) edges in all. No-
tice that we have only shown the path perpendicular
to the edge. A path very similar to this is possible in
the case where the cost of traveling inside the polygon
is extremely high.

Given an angle a, the a-visibility graph of a poly-
gon P is defined as follows: The vertices of the a-
visibility graph are the vertices of P together with
points p in the interior of edges of P such that there
is a vertex v of P visible from p and the line segment
joining p to v intersects the edge of P containing p at
angle 7/2—a. Two vertices u and v of the a-visibility
graph are connected if they are vertices of P that are
visible from each other or if u is an interior point to
an edge of P and v is a vertex of P visible from u
such that the angle between the line connecting u to
v and the edge of P containing u is 7/2—a. It easy to
see that the a-visibility graph of P can be obtained
in O(F) time, using [Her87], where E is the number
of edges of the a-visibility graph.

From Lemma 2, we obtain the following result :

Lemma 4 Given any two points p, ¢ on the bound-
ary of P, there is a shortest p-q path contained in the

edges of the a-visibility graph of P.

Consider two points p and ¢ and the shortest path
H(p,q) connecting them. Three types of shortest
paths must be considered:

1. H(p,q) is a line segment connecting p to gq.

2. H(p,q) goes through an edge of P but does not
visit any vertex of P.

3. H(p, q) visits at least one vertex of P.

It now follows:

Lemma 5 In case 3 above, there exists a shortest
path H(p,q) from p to q such that all of the edges
of this path except possibly the first and the last are
contained in the a-visibility graph of P. Moreover
if p (resp. q) is an interior point of P the edge of
H(p, q) containing p (resp. q) joins p to a vertez of
P or intersects an edge of P at an angle 7/2 — a.

From this we have :

Theorem 1 Finding a shortest path between p and q
can be done in O(E logn) using O(E) preprocessing.

Proof: As described before, it is not hard to see
that cases 1 and 2 can be solved in linear time. Case
3 however requires more work. In the preprocessing
part, we calculate the a-visibility graph of P. This
can be done in O(F) time. By Lemma 4 and Lemma
there is a shortest path from p to ¢ contained in the
graph obtained from the a-visibility graph by adding
to it the shortcuts from p and ¢ to the boundary
of P. This can be done in linear time. Our result
now follows by applying Dijkstra’s algorithm to the
resulting graph.

We now show how to answer shortest path queries
in O(nlogn) time, at the expense of increasing the
preprocessing time to O(nElogn) and using O(n?)
space. As in the previous theorem, cases 1 and 2 can
be easily dealt with, so we concentrate on case 3.

To solve case 3 we use the following strategy: for
every vertex v of P we calculate the shortest path
between p and v and the shortest path between v
and q. We report the smallest such path.

We now show how to calculate the length of the
shortest path between any point p € P and a vertex v
of P in O(logn) time, using O(E log n) preprocessing.

The next lemma follows easily from Lemma 1 and
Lemma 2.

Lemma 6 The shortest path spanning tree from v to
all vertices of P can be done in O(Elogn) where E
is the size of the alpha visibility graph.
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Figure 3: All possible shortcuts

This shortest path will be called T'(v)

It is easy to see that T'(v) induces a partition
II{(P,v) into O(n) regions Ry,...,R,. For each R; let
F(R;) be the point in R; closest to v. We store the
distance between F(R;) and v. We then further sub-
divide each R; into O(|R;|) regions, R;;, ..., R,
1 < i < s in such a way that for every ¢ € R;;,
1 < j < t, we can calculate the distance from ¢ to
F(R;) in constant time. This produces a partitioning
II;( P, v) into O(n) regions.

To calculate the distance between any point p € P
and v we proceed as follows:

1. locate the region R; ; of II;(P,v) containing p
2. find the distance of p to F(R;)
3. find the distance from p to v

Step 1 can be done in O(logn) time and steps 2
and 3 in constant time.

Lemma 7 Given the a-visibility graph of P, we can
answer p-v distance queries in O(logn) time, using
O(E logn) preprocessing .

We are now ready to give our algorithm to find
the shortest path between two points p,q € P.
Preprocessing:

1. Calculate the a-visibility graph.

2. For every vertex v of P calculate II}( P, v)

Query: Given p and g, for every v € P find the
distance between p and v and the distance between
v and ¢, and report the shortest. Clearly for every
vertex this can be carried out in O(log n) time.

We now have the following theorem:

Theorem 2 Using O(n?) space and O(nElogn) pre-
processing, we can answer queries of the type d(p,q)
in O(nlogn) time.

4 The Convex Case

In the case where P is convex, a linear time algorithm
is possible. We give the algorithm here along with a
proof of optimality.

Theorem 3 For P convez, the shortest path from p
to q can be found in optimal O(n) time.

In linear amortized time, we can recursively trim
ears which have angle 8 < 2, unless p or g lies inside
the triangle defined by the ear. We get an irreducible
polygon with respect to p and ¢g. Note that this ir-
reducible polygon contains a combination of shortcut
edges and sections of the original polygon’s edges. It
is obvious that trimmed ears are not needed since (by
Lemma 3) it is more expensive to travel within them
than to cut across them.

We then consider the shortcuts from p and from
q to all edges. No shortcut-to-shortcut edges of the
irreducible polygon is possible, for obvious reasons.
Shortcuts can meet the polygon at vertices or on a
polygon’s edge, at angle /2 — a. Each edge will
have at most 4 intersections with these shortcuts (two
associated to p and two to g), yielding O(n) shortcuts
in total.

It is along two of the shortcuts found above that
the shortest path will start and end. We also know
that the shortest path will only leave the irreducible
polygon at the beginning and at the end of the short-
est path. We must travel along the irreducible poly-
gon’s boundary in a single direction. Assume w.l.o.g
that we will need to travel in a counterclockwise di-
rection. We consider the subset of shortcuts from p
that meet the irreducible polygon at an angle appro-
priate to counterclockwise travel. We label the cost of
travel along the shortcut to the intersection with the
irreducible polygon. We then start at an arbitrary
intersection I, and travel counterclockwise, carrying
the cost of travel from I; to the next intersection, I,
and so on. We keep the minimum cost for each I;.
We may need to travel twice around the polygon in
order to get the shortest path to I;. We repeat this
procedure for clockwise travel from gq.

Let w be the union of all vertices of the irreducible
polygon and the intersection points of the shortcuts
to that polygon. If the shortest path travels through
w, a vertex of the irreducible polygon, then the short-
est path is of length d(p, w)+d(w, ¢), which is known,
assuming a particular direction of travel. What re-
mains to do is to find the minimum over all w, in
both direction of travel and to finally compare to the
straight path from p to g.

This algorithm is optimal since even if the length
of the shortest path is small, we may need to compare
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Figure 4: Verifying a path of length O(n) is necessary

Figure 5: O(n) crossings on a dividing line

it to a linear size path before determining that it is in
fact the shortest possible path. This is obvious from
looking at Figure 4.

If p_(or q) is known in advance, a construction
similar to a Voronoi diagram is possible. This re-
quires preprocessing but brings the query time down
to O(logn).

When both p and ¢ are unknown in advance, we
conjecture that it is possible to build a data structure
which would be some combination of two Voronoi di-
agrams, yielding O(n?) regions, which would results
in O(logn) query time, after preprocessing.

5 Conclusion

A common approach when calculating shortest paths
is using a triangulation to determine possible short-
cuts. In the problem studied here, there is no obvious
way an arbitrary triangulation can be used. For ex-

ample, a given triangulation edge could be crossed

O(n) times (see Figure 5). It is therefore hard to
divide the polygon into simpler sub-cases.

Our algorithm for the simple polygon can be ap-
plied to non-simple polygons with little modification.
Since the path must lie at all time within the poly-
gon’s boundary, we can divide the polygon at the
points where edges cross each other. We get a sub-
problem which consists of finding a path from p to
the first such point and so on until we enter the last
region (where ¢ lies). This approach can be useful for
a parallel implementation.

All of the algorithms that were presented in this
paper work, without modification, for polygons with

holes.
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