Union and Split Operations on Dynamic Trapezoidal Maps

Monique Teillaud*

Abstract: We propose here algorithms to perform two
new operations on an arrangement of line segments in the
plane, represented by a trapezoidal map: the split of the
map along a given vertical line D, and the union of two trape-
zoidal maps computed in two vertical slabs of the plane that
are adjacent through a vertical line D. The data structure is
a modified Influence graph, still allowing dynamic insertions
and deletions of line segments in the map. The algorithms
for both operations run in O(sp logn + log? n) time, where
n is the number of line segments in the map, and sp is the
number of line segments intersected by D.

Keywords: Dynamic algorithms, Randomized algorithms,
Data structures, Trapezoidal map.

1 Introduction

Let us assume that we are computing the arrangement
of a set of line segments in the plane in parallel, under
the following framework : the plane is partitioned into
vertical slabs, and each processor is associated with a
slab V, namely V =la,b[x] — 00, 4+00[ where a,b € RU
{-00,+00}, and a < b. Such a slab will be denoted as
Va5, and its associated processor Py ;. We call the line
z = a the left boundary line of V and the line z = b
its right boundary line. A processor must compute the
trapezoidal map formed by the line segments intersecting
its associated slab V. In addition, the construction of
the arrangement must be dynamically maintained, which
means that line segments can be inserted or deleted, and
the arrangement must be consequently updated.

This can lead to a bad balancing of the data between
the processors, some of them being overloaded, while
others are under-loaded. We must thus perform load-
balancing between the processors. The vertical slab V;;
associated to an overloaded processor P will be split into
two disjoint slabs, V, 3 = Va,cUV, b, ¢ €]a,b[. Then P will
be associated for example with the vertical slab V; ., and
Ve,p will be united to the adjacent slab V; 4. While these
split/union operations are performed on the slabs, the
corresponding split/union operations must be performed
on the arrangements by the associated processors.

As previously stated, the possibility of inserting
and deleting segments dynamically and efficiently in
each slab must be preserved. As the Influence graph

*INRIA, B.P.93, 06902 Sophia-Antipolis cedex (France),
Phone: 433 93 65 77 62, Fax: 433 93 65 76 43, E-mail:
Monique.TeillaudOsophia.inria.fr. Partially supported by ES-
PRIT Basic Research Action r. 7141 (ALCOM II).

[BDS*92] allowed us to construct the trapezoidal map
for a set of line segments in the plane in a dynamic
way, we try here to modify this structure so that split
and union operations along vertical lines can be han-
dled. Moreover, locating points or more general objects
in trapezoidal maps appears to be useful, and the Influ-
ence graph is naturally adapted to efficient locations.

With a similar motivation, Duboux and Ferreira study
the reorganization of a dictionary and its implementation
on a multicomputer [DF94].

Section 2 adapts to our problem the basic definitions
about trapezoidal maps, then in Section 3 we show how
the Influence graph can be modified to permit the split
and union operations, for which algorithms are respec-
tively given in Sections 4 and 5. A randomized analysis
of the algorithms is proposed in Section 6.

2 The trapezoidal map

Trapezoidal maps are often used to compute the inter-
secting pairs among a set S of n line segments. The
trapezoidal map 7(S) is defined as follows: from each
endpoint of a line segment in S, or each intersection point
of two line segments in S, extend a vertical segment to
the first segment in S above, and to the first segment
below (or to infinity if there is no such segment in §).
We obtain in this way a subdivision of the plane into
trapezoids (some of them being degenerate) (Figure 1).
A trapezoid is determined by at most 4 segments of S,
it has a floor, a ceiling, and two vertical walls, through
which it can have at most 4 adjacent trapezoids (at most
2 per wall), called horizontal neighbors (Figure 2).

—— segments of S
weeee. Vertical walls

Figure 1: A trapezoidal map

The definition of a trapezoidal map can be adapted
to our problem: a processor P computes the trapezoidal
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map in its associated slab V = V,;. Then we must
distinguish different types of trapezoids:

/ segments determining trapezoid T
<& horizontal ncighbors of trapczoid T

walls

Figure 2: A trapezoid

e usual trapezoids, also called complete trapezoids
(Figure 3(a));

(a) Complete trapezoids

(b) Left-incomplete trapezoids
(¢) Right-incomplete trapezoids
(d) Doubly incomplete trapezoids

Figure 3: Trapezoids in a slab

o simply incomplete trapezoids, that are bounded on
one side by a boundary line w of V. Such a trapezoid

T has a floor and a ceil that both intersect w, T is left--

incomplete if w is the left boundary line of V, right-
incomplete otherwise (Figure 3(b,c)). The floor and the
ceiling of T also determine a trapezoid in the slab adja-
cent to V with the same boundary line w. This trapezoid
would complete T to form a usual trapezoid if we were
considering the trapezoidal map in the whole plane. A
simply incomplete trapezoid has one wall, thus at most
two horizontal neighbors, that are the at most two trape-
zoids adjacent to it in the same slab V, and it is deter-
mined by at most 3 segments. Inversely, we will also use
the terms left-complete and right-complete;

e doubly incomplete trapezoids are determined by two
segments traversing V, they are bounded by the two
boundary lines of V (Figure 3(d)), they have no wall,
and no horizontal neighbor.

3 The Data Structure

In this section, we first recall the definition of the in-
fluence graph and the way it can be used to compute
the trapezoidal map of a set S of line segments in the
plane, then we show how the structure must be modified
to allow us to perform splits and unions of trapezoidal
maps.

3.1 The Influence Graph for trapezoidal
maps

The Influence graph [BDS*92, Tei93] is based on the

idea of maintaining the history of the construction by an
incremental algorithm [BT86]. It allows semi-dynamic
constructions, with only insertions, and dynamic con-
structions, with insertions and deletions, in particu-
lar cases [DMT92], and in a general setting, it can
be augmented to obtain such dynamic constructions
[DY93]. However, for the trapezoidal map, it has been
shown that a standard Influence graph was sufficient
(see [DTY92, Tei93], or better [BY95] for a revised algo-
rithm) to allow deletions.

We take interest in trapezoids determined by segments
of a set of line segments S, as we defined them in Section
2. We will say that such trapezoids are defined by S.
The Influence graph is a rooted directed acyclic graph,
whose nodes are associated with trapezoids defined by
S. Its root corresponds to the whole plane, which is the
trapezoid defined by an empty set of line segments. If
we compute a trapezoidal map incrementally, each new
segment s will intersect some of the trapezoids defined
by the segments inserted before it. Those trapezoids
must be removed from the updated trapezoidal map, and
replaced by new ones. But they will remain stored in
the Influence graph as trapezoids killed by s. In this
way, the influence graph stores the whole history of the
construction. The new trapezoids are said to be created
by s. In the Influence graph, a trapezoid killed by s
becomes parent of a trapezoid created by s if and only
if they overlap (Figure 4). Thus a trapezoid can have
at most four children, but it may have a non-constant
number of parents.

For each node, we store
o the at most 4 segments determining it (its creator is
one of them)

e its at most 4 horizontal neighbors
¢ its killer
e its at most 4 children

The Influence graph allows to locate a segment s to
be inserted: as a child is contained in the union of its
parents, we will find all the trapezoids of the current
trapezoidal map that are intersected by s by recursively
traversing the Influence graph from the root to the leaves
(though the graph is not a tree, we call leaves its nodes
without children), visiting all the trapezoids intersected
by s.
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The trapczoidal map before s is inserted

Trapezoids 4, 6, 7, 8 are killed, a, ..., j are created,

and the Influence graph is updated:
root

N
AN AN

i i
Figure 4: Insertion of segment s

3.2 The modified influence graph

A processor P computes the trapezoidal map in its asso-
ciated slab V' = Vg, by constructing incrementally an
Influence graph, with the following modificationsin each
node:

e We store a mark “complete, left-incomplete, right-
incomplete, doubly-incomplete”

e We need to store not only the links from a node to its
children, but also to its parents. Notice that the parents
of a node are naturally sorted along the segment that
created it. This allows us to store double pointers to the
parents of each node in a concatenable queue [AHU74],
allowing to split a set of parents, or to concatenate two
consecutive (sorted along the same segment) lists of par-
ents of two adjacent trapezoids in time logarithmic in
the total number of parents. Such a structure can be
implemented as a 2-3 tree. '

In the 2-3 tree, the links between nodes will not be uni-
directional as usual, we need here bi-directional links.
With these double links, when an Influence graph is tra-
versed, the children of a node N will be obtained by ac-
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cessing to the roots of the 2-3 trees N belongs to, which
can be done in time logarithmic in the number of ele-
ments in the 2-3 trees. This number is bounded by the
total number of parents of the (at most 4) children of N.
This will result in a O(logn) term in the complexity of
locating a new segment in the modified Influence graph,
where n is the total number of segments.

Note that this structure does not change the time of
creating a new node, since the set of parents is naturally
sorted, so that the structure can be constructed in time
proportional to the number of parents.

Notice that a complete trapezoid can have incomplete
children, and that incomplete trapezoids usually have
both complete and incomplete children.

4 Splitting a trapezoidal map

Let D be a vertical line, included in a vertical slab V.
Let us assume that the trapezoidal map of the set of line
segments intersecting V, together with the correspond-
ing influence graph, have already been computed. We
want to construct the two Influence graphs respectively
corresponding to the slabs V; (on the left hand side of D)
and V; (on the right hand side of D) obtained by split-
ting V along D. Both new Influence graphs must be the
same as what would have been obtained by directly con-
structing them in the new slabs. Of course, moreover,
we do not want to compute them from scratch.

The idea of the algorithm consists in recursively
traversing V’s Influence graph, in order to find all trape-
zoids in the history that are split by D. While perform-
ing this traversal, the two new Influence graphs will be
constructed.

First a new root is created, that will for example be
the root of the right Influence graph, and the old root
will be the root of the left Influence graph. The following
operations are then recursively performed: each node N
visited must be split into two parts, called N;, which is
the part of N on the left of D, and which will be a node
of the left Influence graph, and similarly N,., on the right
hand side.

e If N was right-incomplete, then N, is doubly-
incomplete, and if N was left-incomplete, then N; is
doubly-incomplete; if N was doubly-incomplete, both N,
and N; are doubly-incomplete; otherwise, N was com-
plete, N; is right-incomplete, and N, is left-incomplete.

e A child that is not split by D becomes a child of N;
or N, according to its position with respect to D.

e A child T split by D is recursively examined. It will
be split into two trapezoids T}, child of N; and T, child
of N,.

e The parents of N that are not split by D must also
be updated: the ordered set of parents of N is split by
D to form the two sets of parents of N; and N;.

The preceding operations update the children of N.
However, the Influence graphs thus created are only tem-



porary ones, and in order to create correct Influence
graphs, the following improvements must be done:

e If N, and N; both have 2 or 3 children, the modified
part of the structure is correct.

e If N, only has one child 75, then it is easy to see
that in fact N, and T, are two identical trapezoids. The
link parent-child between them has no reason to exist,
it would not have been created if the Influence graph
for the slab V, had directly been constructed, because it
does not correspond to any insertion of a segment in this
slab. The two nodes must then be merged. (In fact, this
could have been detected and solved while performing
the operations described just above.)

e The same holds for N; and T;.

See Figure 5 for the illustration of the whole process.

D

Infl graph before the split

[
(]

Py
1 2 3 T insertion of sy

AN

’
.

D

temporary Influence graphs

insertion of sy

N N,
£¥ T \
1 2 3 T T.
\J ¥ X
4 4, 5 6 7
corrected Influence graphs
N; N. =T,
£¥ T 2% '
1 2 3 Ti=4 4, 5 6 7

Figure 5: Splitting a node N

5 TUnion of two trapezoidal maps

ing to two slabs V,. and V}, neighbor along a vertical line
D. The Influence graph in slab V = V. U Vi must be
deduced from these two given Influence graphs.

To this aim, both Influence graphs will be simulta-
neously traversed starting from their root, by visiting
all left-incomplete nodes in V. and all right-incomplete
nodes in V;, they are appropriately merged. The other
nodes are not modified and need not be traversed. The
new Influence graph is constructed during the recursive
traversal.

The two Influence graphs before the union

Ny N,
£ AT
1 2 3 4 5 6

7 8

The Influence graph after the union
(assuming that s; was inserted after s,)

N=NUN,
£ X—
insertion of s, 1 2 3 4UN,

insertion of s;

Figure 6: Merging two nodes N; and N,

More precisely, the roots of the two Influence graphs
must be first merged. Then, at each step of the recur-
sion, let N, and N; be respectively nodes of the Influence
graphs of V. and V; to be merged to form a trapezoid
N = N, UN; in the new Influence graph. They have
the same ceiling and the same floor. A new node N is
thus created. The ceiling and floor of this new node are
the same as N,’s and N;’s. Its horizontal neighbors on
the right (resp. left) are those of N, (resp. Nj), if they
exist, otherwise N is right-incomplete if N, was, and
left-incomplete if N; was, doubly-incomplete if N, was
right-incomplete and N; was left-incomplete.

o If N, and N; had been killed by the same segment,
then N can receive their children. And the recurrence
goes on, for the two children that must be merged among
all children of N: two respective children T} and T, of
N; and N, must be merged if they have the same ceiling

In fact, this operation is nothing but the exact inverse of and the same floor. The set of parents of the new node
a split. We are given two Influence graphs, correspond- T thus created is obtained by concatenating, from left
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to right, the parents of T;, the new trapezoid N, and the
parents of T;..

o Otherwise, if N, was killed by a segment s, before
N, was killed by s;. In this case, N is killed by s, in the
new Influence graph, its children are the left-complete
children of N,, and a new trapezoid T formed by the
union of N; (which is not dead yet when s, is inserted)
with the child T, of N, that is left-incomplete. The total
set of parents of T is obtained by adding N to the set of
parents of T5..

The recurrence then goes on with the merge of N; and
T..

o The symmetric case when N; was killed before N, is

handled in the same way.

6 Analysis

Let S denote a set of n line segments. We perform a
randomized analysis of the algorithm. We refer to Clark-
son’s introduction to this method of analysis in compu-
tational geometry [Cla87, Cla88] and other articles or
books [CS89, Cla92, Mul93, Sei93] among many others,
such as [Mul91, Sch91, DMT92] for dynamic cases. We
assume that the n line segments are inserted in random
order, i.e. that the n! possible orders of insertion are
equally likely. For a deletion, we also assume that any
segment can be chosen with the same probability. Then
a randomized analysis shows that:

Theorem 6.1 Using the modified Influence graph, an
arrangement of n line segments can be computed on-line
with O(n + a) ezpected space and O (log2 n+ 2logn)
ezpected update time, where a is the complezity of the
arrangement. The deletion of a line segment can be per-
formed in ezpected O (log? n + £lognloglogn) time.

Proof : The expected complexity given for the usual
Influence graph in [BDS*92, Tei93] revised in [BY95] are
the following: O(logn+ £) update time for an insertion,
and O(log n+ £ log log n) update time for a deletion. The
modification of the structure, introduced in Section 3.2,
consisting in using concatenable queues to link a node to
its children, results in an additional logn factor in the
time complexity of the traversal of the Influence graph
(but they do not change the space complexity) and give
the result. o

Remark: The algorithm for deleting a segment uses
an efficient priority queue [VEKZ77] and dynamic per-
fect hashing [DKM™88], in order to achieve this running
time. If we only use standard balanced trees, the time
complexity of a deletion is O ((1 + ﬁ) log? n).

We can now analyze the complexity of the algorithms
proposed for the split and union in the previous sections.
ny denotes the number of segments intersecting a given
slab V, and sp is the number of segments intersected by
the vertical line D. We first show the following lemma.
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Lemma 6.1 The expected number of nodes of the In-
fluence graph for slab V| that are split by D is O(sp +

logny).

Proof : After the insertion of the k" segment in slab
V, the segments already inserted in the Influence graph
form a random sample of size k of the ny segments.
The expected number of present segments that are in-
tersected by D is % - sp. Thus there are n—';— -sp+1
trapezoids of the current trapezoidal map that are split
by D. One of these trapezoids has been created by the
kt* insertion if and only if the k" segment inserted is
one of the at most four segments determining this trape-
zoid. The expected number of trapezoids of the Influence
graph, split by D is thus

ny

D

k=1

.

k 4
(;; -sp+ 1) = O(sp +logny)

0

Theorem 6.2 A split of a trapezoidal map aelong a line
D can be performed in O(splogny + log® ny) ezpected
time complezity.

Proof : The algorithm locates in the modified Influ-
ence graph the expected O(sp+log ny) nodes to be split.
When a node is split, we find its at most four children
in O(logny) worst-case time by traversing the at most
four corresponding concatenable queues. We also find
its neighbors in constant time. Each node to be split
is updated. Note that all the operations to be achieved
are done in constant time, except the update of the par-
ents: the sorted set of parents of the split node is divided
into two sorted sets corresponding to the two new nodes.
Since the links joining a node to its parents are organized
in a concatenable queue, this division can be achieved in
O(logny) worst-case time, which implies the result. O

Since we noticed that computing the union of two In-
fluence graphs is the inverse of splitting an Influence
graph, we have:

Theorem 6.3 Computing the union of two trapezoidal
maps along a vertical line D is done in O(splogny +
log2 ny) ezpected time complezity.

The logarithmic factor added in all the complexity re-
sults because of the links from each node to its parents
is probably overestimated for the practical implementa-
tion: as the number of children of a node is constant,
the average number of parents of a node will also be
constant, though a given node can have a linear number
of parents. We can thus expect this factor to appearas a
constant, in the observed complexity of the implemented
algorithms.

Note that our results are output-sensitive, since the
complexity depends on the number of segments inter-
sected by the line D. No assumptions on the vertical
line D is made.



7 Concluding remarks

It must be noticed that this algorithm is very simple, as
all algorithms using an Influence graph are.

Though we have only been considering a vertical line
D throughout this paper, we can notice that the algo-
rithm would apply to a line with any direction. The
description of the trapezoids resulting from a split by a
non-vertical line would of course be more complex, but
the algorithm would run similarly. However, an analysis
similar to what was done in Section 6 would unfortu-
nately be impossible: the number of trapezoids inter-
sected by D would no longer depend on the number of
line segments intersected by D, since D could traverse a
trapezoid by intersecting only its two vertical walls and
none of the segments determining it.

The extension of this algorithm to more general curves
could also be imagined, with the same restriction on the
analysis. It would provide a simple algorithm allowing
a new kind of range-searching: we could not only count
or report the segments intersecting a given domain, but
also return their trapezoidal map, together with the cor-
responding Influence graph, allowing further insertions
and deletions in the domain.
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