Computing a Threaded Quadtree (with links between neighbors) from the
Delaunay Triangulation in Linear Time*
(Extended Abstract)

Drago Krznaric

Christos Levcopoulos

Department of Computer Science
Lund University, Box 118, S-221 00 Lund, Sweden.

drago@dna.lu.se

1 Introduction

A quadtree or a two-dimensional trie is a data structure
which can be used for hierarchical representation of a set
of points. Hierarchical data structures are of great impor-
tance for representing geometric data, with applications in
computer graphics, image processing, and robotics [7]. In
addition, they can assist important algorithms in compu-
tational geometry. It was mainly this latter purpose which
motivated us to propose a threaded quadtree. There are
several papers considering variants of quadtrees and re-
lated data structures, but for a more comprehensive ex-
position we refer to [7].

Let S be a set of n points (called vertices) in the plane.
A quadtree is obtained by first enclosing all vertices with
a square. This square is partitioned into four squares,
which are each recursively partitioned into four squares,
and so on. A recursion ends when a square contains at
most one vertex. The induced squares are represented as
nodes in a rooted tree, each square having its (at most
four) nonempty subsquares as children. However, in the
threaded quadtree which we propose, not all squares with
only one nonempty subsquare are represented. In this way,
the size of the threaded quadtree becomes linear, although
it still contains all essential information.

A common operation on a quadtree is, given a node cor-
responding to a square s, search for all other nodes whose
corresponding squares lie in the vicinity of s. To support
such operations efficiently we thread (link) nodes that cor-
respond to neighboring squares of the same size. The re-
sulting threaded quadtree has the ability to answer certain
types of non-trivial range queries in constant time. This
was proved helpful in [4] for an algorithm that computes
an approximation of the known complete linkage cluster-
ing (in linear time from the Delaunay triangulation). It
was also helpful in order to develop an algorithm that,
given the Delaunay triangulation, computes the greedy
triangulation in linear time [5]. That algorithm also illus-
trates a reason to start from the Delaunay triangulation,
because not only most algorithms for greedy triangula-
tion, but also other algorithms in computational geome-
try, build the Voronoi diagram (from which the Delaunay
triangulation can be obtained trivially).

*This paper was partially supported by TFR

-187-

christos@dna.lu.se

To describe one type of problems where the threaded
quad-tree can be used, suppose that every vertex carries
some vital data. In our case, for simplicity, we assume that
data is a color. Consider a square-grid covering the plane,
and suppose that each square possesses a function of the
vertices contained in it. The function might, for example,
count the number of vertices of each color (thus determin-
ing the color of the square). Imagine now that we start
with a fine-grained grid such that every square contains at
most one vertex, and then, stepwise in phases, we let the
grid become sparser by merging four squares into one un-
til all vertices of S are contained in a single square. (This
can be illustrated by repeatedly shrinking a picture repre-
sented by p pixels to one that is represented by p/4 pixels.)
A conceivable task could be to color the nonempty squares
at each phase according to their function (the background
is assumed to have some default color), and to explore
adjacencies. To accomplish that we need at least three
pieces of information at every phase: (1) which squares are
nonempty, (2) which vertices are contained in a nonempty
square, and (3) which nonempty squares are in the vicinity
of a nonempty square.

The threaded quadtree is defined in Section 2. In Sec-
tion 4 we show that, given the Delaunay triangulation
of S, the threaded quadtree can be computed in time
O(na(n,n)), where a(n,n) is the inverse of Ackermann’s
function. In addition, by taking advantage of certain prop-
erties of the Delaunay triangulation, we can show that the
running time can be reduced to O(n). Our construction
of the threaded quadtree is similar to the clustering pro-
cess indicated in the above “coloring” example, and the
resulting quadtree contains essentially the three pieces of
information mentioned at the end (in particular, the third
operation can be carried out in constant time due to the
threads). For the type of problems illustrated by the ex-
ample, we describe in Section 5 a general way in which
the threaded quadtree can be used.

2 Defining the threaded quadtree

Definition 2.1 Let d be the distance between the two
closest vertices of S. For any integer 1 > 0, d; is defined
to be equal to 2:~'d. :



Definition 2.2 Let H be a square with sides parallel to
the coordinate axes that properly contains all vertices of
S and that can be partitioned into 2¥ x 2% (k being an
integer) equal-sized squares of diameter do. Then the d;-
grid is the partitioning of H into 28=% x 2~ equal-sized
squares of diameter d;. The squares induced by the d;-grid
are called d;-squares.

We say that a d;-square is empty if it contains no vertex;
in addition, we assume w.l.o.g. that no vertex is at the
boundary of a d;-square (a vertex lying on a vertical line
of a d;-grid is considered to be contained in the adjacent
d;-square to the right of this line, and, similarly, a vertex
lying on a horizontal line is considered to be contained in
the adjacent d;-square above this line; i.e., as if H has been
infinitesimally transposed to the left and downwards.)

The easiest way now to define a quadtree would be to let
the root correspond to the smallest d;-square containing
all vertices in S, and to define the other nodes recursively
so that each node which corresponds to a nonempty d;-
square s has, if i > 0, one child for each nonempty d;_1-
square contained in s (thus the leaves and the nonempty
do-squares coincide). This quadtree may however have
much more than a linear number of nodes, because it may
contain long paths on which each interior node has only
one child. A simple refinement that reduces the size to
linear is to represent only those d;-squares for which the
corresponding nodes have more than one child, that is to
compress each of the above mentioned paths into a single
edge. Indeed, we do not loose any essential information
by such compressions.

A weakness which remains even in the compressed
quadtree is that for two d;-squares s and g represented in
the quadtree, the nearest common ancestor of their corre-
sponding nodes may be the root even if s and q are close to
each other. Consequently, to find ¢ given only s, we may
have to follow a long path in the quadtree. Therefore, we
thread (link) nodes that correspond to d;-squares that are
relatively close to each other.

Definition 2.3 The neighborhood of a d;-square s con-
sists of all d;-squares that are within distance less than or
equal to d; from s (the 24 d;-squares closest to s). The
neighbor list of a nonempty d;-square s consists of pointers
to all nonempty d;-squares in the neighborhood of s.

In the threaded quadtree, for a node corresponding to
a di-square s, we also have a node for each nonempty
d;-square in the neighborhood of s. Although this means
that we now may have more nodes than in the compressed
quadtree, we can still linearly bound the number of nodes.

Definition 2.4 A set of (at most four) nonempty d;-
squares is called a family if they have a common point
in the plane and no other nonempty di-square is within
distance less than 4d; from any of them.

Indeed, the di-squares of a family can only have point-
ers to each other in their neighbor lists. It can be shown

(Corollary 4.8) that, for a path compressed to a single
edge, all nodes on the path but a constant number corre-
spond to d;-squares which belong to families.

Definition 2.5 A nonempty d;-square s is said to be sig-
nificant if it has at least one of the following properties:
(1) s does not belong to a family, or (2) s belongs to a
family whose d;-squares contain together more than four
nonempty d;_y-squares.

The second property in the above definition is merely
to ensure that each node has at most four children.

Definition 2.6 Let m be the smallest integer such that
all vertices of S are contained in a single dm-square. The
threaded quadtree or TQT of S is a rooted tree, where
the root corresponds to the nonempty dp,-square and
the leaves correspond to all nonempty do-squares. The
other nodes correspond to all significant d;-squares for
i=1,2,...,m—1. Let v be any node of the tree different
from the root, and let s be its corresponding d;-square.
Further, let j be the smallest integer such that s is prop-
erly contained in a significant d;-square q. Then the par-
ent of v is the node that corresponds to q. In addition,
the node v has also pointers to all nodes that correspond
to nonempty d;-squares in the neighborhood of s.

3 Computing the leaves

To gain intuition about the algorithm, we can consider
how all nonempty dg-squares are computed. Since dyp is
smaller than the distance between the two closest vertices,
there is at most one vertex contained in any do-square.
Thus we can easily create a list consisting of all nonempty
do-squares by letting each vertex constitute a nonempty
do-square.

Let s be any nonempty do-square and let v be the vertex
in s. The neighbor list of s can be created by a breadth-
first search from v on the Delaunay triangulation of S, in
such a way that the search ends when all paths of length
< 8dp that emanate from v have been visited. Whenever
we visit a vertex contained in a dp-square which is in the
neighborhood of s, we insert a pointer to this do-square in
the neighbor list of s (unless such a pointer already exists).
To see that this suffices for computing the neighbor list of
s, let ¢ be any nonempty do-square in the neighborhood
of s and let u be the vertex in ¢. Since the diameter of a
do-square is equal to do we have that |u,v| < 3do. Hence,
by the following observation, which was proved in [3]), we
infer that g is included in the neighbor list of s.

Theorem 3.1 [3] There is a path of Delaunay edges of
total length less than 2.42|u,v| between any two vertices
u and v.

Since dp is smaller than the distance between any pair
of vertices, there is a constant number of vertices within
distance less than 8dp from any vertex. Thus we realize

-188 -



that the neighbor lists of all nonempty do-squares can be
computed in total time O(n). This subsection is summa-
rized in the following lemma.

Lemma 3.2 The leaves of the threaded quadtree and
their neighbor lists can be computed in time O(n).

4 Computing the threaded quad-
tree in a hierarchical way

We use the hierarchical clustering method in [4] to decom-
pose S into subsets for which the TQT can be computed
locally. The rectangular diameter of a vertex set A, ab-
breviated rdiam(A), is defined to be the diameter of the
smallest enclosing rectangle with sides parallel to the co-
ordinate axes.

Definition 4.1 A subset A of S is a 23-cluster if the dis-
tance between vertices of A and vertices of S — A is greater
than 23-rdiam(A) or A equals S.

In [4] it was shown that any two non-identical 23-
clusters are either disjoint or one of them is a proper sub-
set of the other. This property causes the 23-clusters to
form in a natural way a unique hierarchy, which can be
described by the following rooted tree.

Definition 4.2 The 23-cluster tree of S is a rooted tree
whose nodes correspond to distinct 23-clusters, where the
root corresponds to the vertex set S and the leaves to
single vertices of S. Let a be any internal node and let
A be its corresponding 23-cluster. Then the children of a
correspond to all 23-clusters C such that C C A and there
is no 23-cluster B such that C C B C A.

In the continuation we will by a 23-cluster also refer
to its corresponding node of the 23-cluster tree and vice
versa. An algorithm that computes the 23-cluster tree in
O(n) time from a Euclidean minimum spanning tree (or
the Delaunay triangulation [1]) of S was given in [4]. As
a byproduct of that algorithm we also receive for each 23-
cluster A the shortest diagonal which has one extreme in
A and the other in a sibling of A.

Definition 4.3 A 23-cluster A is said to have grid size 1
if i is the smallest integer greater than or equal to 0 such
that four d;-squares with a common point in the plane
contain all vertices of A. The (at most four) nonempty
d;-squares that contain vertices of a 23-cluster A of grid
size 1 are called the covering squares for A.

Having computed the leaves, we compute the TQT by
a depth-first search from the root of the 23-cluster tree,
and for each 23-cluster we compute TQT locally when we
backtrack from it. In this way, when we start to compute
the TQT of a 23-cluster A, we have already computed the
TQT of each child of A. This means that we for each child

B have four or less rooted trees, each tree being a subtree
-189-

of the final TQT and rooted at a node which corresponds
to a covering square for B. Hence, in order to compute
the TQT of 4, it is enough to compute the part of the
final TQT which lies between the covering squares for A
and the covering squares for the children of A.

The Delaunay triangulation is used to find all nonempty
d;-squares that arc within some bounded distance from
a nonempty d;-square s, by searching out on Delaunay
edges of a certain length that emanate from s (in a similar
fashion as in Section 3).

Definition 4.4 The bounded Delaunay edges of a non-
empty di-square s, denoted by BD(s), consists of all De-
launay edges of length less than 8diyy such that they
have one endpoint in s and the other endpoint outside
the neighborhood of s.

A property of 23-clusters is that they are quite sepa-
rated from each other. Indeed, the following observation,
which is easy to verify, says that they are enough sepa-
rated so that the bounded Delaunay edges are within a
23-cluster A when computing the TQT of A.

Observation 4.5 If A is a 23-cluster tree of grid size 1 >
0, then any Delaunay edge connecting a vertex of A with
a vertex of S — A has length greater than 8d;.

The following is another property from [4] that we will
use.

Lemma 4.6 For any 23-cluster A with m > 2 children,
let | be the length of the shortest diagonal connecting
two children of A, and let I' be the length of the longest
diagonal connecting two children of A. Then the ratio
between ' and [ is less than 25™~! /23.

4.1 Computing the threaded quadtree of
a 23-cluster

Let A be any 23-cluster and let m be the grid size
of A. The TQT of A is computed in a sequence
Pk, Pi+1,-- -, Pm—1 Of phases. The objective of a phase
p; is to find all significant d;4,-squares which contain ver-
tices of A. The first phase p; can be chosen so that no
dj-square is significant, but within a few (constant) num-
ber of phases we will start to find significant squares (for
example, we can choose k so that [ € [8d,8dy+1), where !
is the length of the shortest diagonal connecting two chil-
dren of A).

It is quite easy at a phase p; to find all significant d;41-
squares if we have all d;-squares that are relevant for this
purpose. The main difficulty is to compute the neighbor
list of a nonempty d;4;-squares s, because the neighbor
lists of the di-squares contained in s do not necessarily
contain all nonempty d;-squares in the neighborhood of
s (since the neighborhood of a d;;;-square is larger than
of a d;-square). However, by Theorem 3.1, we know that
there is path in the Delaunay triangulation of length less
than 8d;4; from a vertex in s to a vertex in a d;1-square



in the neighborhood of s. This is the reason for computing
the bounded Delaunay edges in Definition 4.4.

Since we compute bounded Delaunay edges, we need
the d;-squares containing a child B of A at the phase p; if
there is a Delaunay edge of length less than 8d;, incident
to exactly one vertex of B. However, at the phases before
pi; we do not have to know about B. Therefore, we assign
to each phase p; the portion of the children of A which
can be ignored until phase p; is reached. More precisely,
let B be any child of A, and let [ be the length of the
shortest diagonal that connects B with another child of
A. Ifl € [8d;,8d;+1), then B is assigned to phase p;. By
Observation 4.5, a child of grid size 7 cannot be assigned
to a phase before p;. Hence, if a child B is assigned to
some phase p;, then at most four d;-squares contain all
vertices of B.

At each phase p; we keep a list L; consisting of
nonempty d;-squares which our algorithm needs in order
to find significant d;;-squares and to compute their
neighbor lists. One part of the d;-squares in L; consists of
those d;-squares computed at phase p;—;, and the other
part consists of those d;-squares that contain vertices of
a child assigned to phase p;. The algorithm for locally
computing the TQT of a 23-cluster A is as follows,
starting with each list L; being empty:

Algorithm 1

1. Let m be the grid-size of A, and let p; be the first
phase (see above for determining k).

2. Assign each child of A to a phase as described above.
fori=kk+1,...,m—1do

3. Add to L; each d;-square that contains vertices of a
child that is assigned to phase p;.

For each s in L;, compute the set BD(s) and associate

s with every vertex v in s such that v is an endpoint
of an edge in BD(s).

For each s in L; we construct a set N(s) consisting
of all nonempty d;-squares that are within distance
< 2d;4; from s. This can be done as follows. First
all nonempty d;-squares that are in the neighbor list
of s or that can be reached by an edge in BD(s) are
visited. Then the same is repeated recursively at each
d;-square ¢ that has been visited such that g is within
distance less than 8d;; from s. When the search ends
it follows from Theorem 3.1 that we have visited all
nonempty d;-squares within distance < 2d;4; from s.

. For each s in L; do the following. Let s’ be the d;41-
square that contains s. Then s’ is associated with
each d;-square in the neighbor list of s that is also
contained in s’. Thereafter, the d;-squares in s’ are
removed from L;, and s’ is inserted into list Li4;.

. For each s’ in Liy; we compute the neighbor list of

s' in the following way. Pick any d;-square s whilcgh0

is contained in s’ and scan the set N(s): whenever
a d;-square contained in a d;41-square in the neigh-
borhood of s’ is encountered, add a pointer to this
d;41-square in the neighbor list of s’ unless such a
pointer already cxists.

. Traverse the list L;4; and add those d;+;-squares that
are significant to the TQT.

endfor
end Algorithm 1

For the sake of analysis, a d;-square which is contained
in the list L; when Algorithm 1 computes the TQT of a
23-cluster A is said to be an active square on A.

Lemma 4.7 If A is a 23-cluster with N > 2 children,
then the total number of active squares on A is O(N).

Proof We say that a merging takes place at phase pi41
if two nonempty d;-squares are contained in a single d;4 -
square. Recall that if a child B of A is assigned to a
phase p;, then at most four d;-squares containing vertices
of B are added to the list L; at step 3. Hence, the to-
tal number of d;-squares added to L; at step 3 over all
i=kk+1,...,m—1is O(N), and so the total num-
ber of mergings over all phases is also O(N). Let B be
any child of A, and let p; be the phase that B is assigned
to. Further, let F be the set of at most four nonempty
d;-squares which contain vertices of B and that are added
to the list L; at phase p;. Finally, let ¢ be the number
d;-squares in F. Since B is assigned to phase p;, there
is a nonempty d;-square ¢, ¢ ¢ F, within distance less
than 8d;;; from F. This means that after ¢ subsequent
phases, for a sufficiently large constant c, one of the fol-
lowing two situations will occur: (1) there is a set F' of
nonempty d;.-squares which all have a common point in
the plane, such that ¢ and the d;-squares in F' are con-
tained in distinct d;4.-squares of F', or (2) considering ¢
and the d;-squares in F, at least two of them are contained
in the same d;;.-square (in which case a merging has oc-
curred). In the first situation we have that F' contains
at least t + 1 d;;.-squares. Moreover, if the final phase is
not reached yet, then the vertices in F' cannot constitute
a 23-cluster by themselves, and so there is a nonempty
diyc-square ¢’ (¢’ ¢ F') within distance less than 23-2d,4.
from F'. Hence, since at most four squares may have a
common point in the plane, we realize that if the constant
c is chosen sufficiently large, then the following holds: If a
nonempty d;-square s is contained in a d;-square for more
than 4c distinct j’s, then for some of these j’s, a merging
has occurred in a d;j-square which is adjacent or equal to
the d;-square containing s. In this way we associate each
active square on A with some merging, but to each merg-
ing we associate no more than a constant number of active
squares on A. Consequently, as there may occur at most
O(N) mergings, the total number of active squares on A
is O(N). ]

Since the 23-cluster tree has O(n) nodes, we obtain



Corollary 4.8 The total number of active squares during
the computation of the threaded quadtree is O(n).

Lemma 4.9 Let A be any 23-cluster with N > 2 chil-
dren, and let IN(A) be the set of all Delaunay edges which
connect children of A. Then Algorithm 1 computes the
threaded quadtree of A in time O(|IN(A)|) plus the time
taken to compute the bounded Delaunay edges of each
active squares on A.

Proof Obviously steps 1, 2 and 3 take total time O(N).
Since N is less than or equal to 1+ |[IN(A)], steps 1,2 and
3 take total time O(|IN(A)|). Consider now step 4. If we
ignore the time taken to compute the BD(:) sets, then
step 4 takes totally constant time per Delaunay edge in
BD(s) of each active square s on A. But for a sufficiently
large constant ¢ and any integer i, BD(s) N BD(s') = 0 if
s is a d;-square and s’ is larger than a d;.-square. Hence,
since the set BD(s) of an active square s on A may by
Observation 4.5 only contain Delaunay edges of IN(4),
step 4 takes total time O(|IN(A)|) plus the time taken to
compute the BD(-) sets. By using Lemma 4.7 and by
observing that there is a constant number of d;-squares
within distance less than 8d;4+; from any dj-square, it is
straightforward to realize that the steps 5, 6, 7 and 8 also
take total time O(|]IN(A)|) plus the time taken to compute
the BD(-) sets. o

Since IN(A) and IN(B) are disjoint for non-identical
23-clusters A and B, we obtain

Corollary 4.10 We can compute the threaded quadtree
in time O(n) plus the time taken to compute the bounded
Delaunay edges of each active squares.

4.2 Computing bounded Delaunay edges

Definition 4.11 Let A be a 23-cluster. Then the set
OUT(A) consists of all Delaunay edges with one extreme
in A and the other in a sibling of A. The set IN(A) is the
union of all sets OUT(B) such that B is a child of A.

Let (u,v) be any edge of the Delaunay triangulation of
S. Further, let A be the nearest common ancestor of nodes
u and v in the 23-cluster tree. Finally, let B and C be the
children of A lying on the unique paths from A to u and
from A to v, respectively. Then (u,v) clearly belongs to
IN(A), OUT(B) and OUT(C). Moreover, we can find the
nodes A, B and C in constant time by constructing the
trees T' and T" as follows (these extra trees are used to
cope with the problem when a node has many children).

Initially the trees T’ and T” are equal to the 23-cluster
tree. Then we do the following for each internal node
A, of the 23-cluster tree. Let By, Ba,..., By be the chil-
dren of A;. Then we add nodes Az, As, ..., A and edges
(Al ) Az), (A2, Aa), Sy (Ak—l’ Aj) in both T'and T" (thus
creating a path from A; to Ay). Thereafter we remove
edges (A1, B;) for i = 1,2,...,k in both T' and T". Fi-
nally, in 7" we add edges (A;, B;) but in T" we add edges

191 -

(A;, Bi—is1) for i = 1.2.....k. After the construction.
both T' and 7" have O(n) nodes and each internal node
has two children.

Consider now the nearest common ancestor of u and v
in T' respectively T”. One of them has B as a child and
the other has C as a child. The nearest common ancestor
can be found in constant time using O(n) preprocessing
and O(n) space (see [2]). Thus we can compute the sets
IN(A) and OUT(A) for each 23-cluster A in total time
O(n).

Let A be any 23-cluster. Further, let k be the greatest
integer such that dj is less than or equal to the length
of the shortest Delaunay edge of IN(A4). Finally, let m
be the smallest integer such that 2d,, is greater than the
length of the longest Delaunay edge of IN(A). Then, by
Lemma 4.6, the difference between m and k is at most
O(|IN(A)|). Hence, we can in time O(|IN(A)|) create a
sequence by, bx41,- . ., bm Of buckets such that a bucket b;
contains all edges of IN(A) of length in [d;,2d;). Since
IN(A) and IN(B) are disjoint for non-identical 23-clusters
A and B, we can compute such a bucket sequence of the
Delaunay edges in IN(A) for each 23-cluster A in total
time O(n).

Let A be any 23-cluster and consider Algorithm 1 of
the previous subsection that computes the TQT of A. Let
bk, bk41,- - -, bm be the bucket sequence of IN(A). At any
phase p; of the algorithm, a Delaunay edge in a set BD(s)
is contained in one of the buckets b;, b;41, biy2, bit+3. Thus
we can compute BD(s) of every d;-square s in the list L;
by simply scanning those buckets, and distribute the edges
among the d;-squares (each edge is considered no more
than four times for this purpose). To find out which d;-
squares that contain the endpoints of an edge, we can use
the standard union-find algorithm (see [8]). Since there
are n nonempty do-squares and O(n) Delaunay edges, we
perform at most n—1 union operations and O(n) find oper-
ations. Thus the total time spent to compute the bounded
Delaunay edges of all active squares is O(n a(n,n)), where
a(n,n) is the functional inverse of Ackermann’s function.
Hence, by Corollary 4.10, we obtain the following theorem.

Theorem 4.12 Let S be any set of n vertices in the
plane. Given the Delaunay triangulation of S, we can
compute the threaded quadtree of S by the above method
in time O(n a(n,n)) using O(n) space.

The bounded Delaunay edges of a d;-square s can also
be obtained by walking on Delaunay triangles along the
boundary of s. By keeping track of the shortest Delaunay
edge that emanate from s in 8 directions, we can avoid
considering long Delaunay edges crossing the boundary
of s (more details can be found in [4]). In this way, the
bounded Delaunay edges can be computed in total time
O(n), which gives the following theorem.

Theorem 4.13 Let S be any set of n vertices in the
plane. Given the Delaunay triangulation of S, we can
compute the threaded quadtree of S in O(n) time using
O(n) space.



g,

5 On the usage of the threaded
quadtree

A context in which the TQT may be used is when we
have an algorithm that makes range queries in regions that
stepwise increase in size. The information stored at the
nodes can then be computed incrementally in a bottom-
up fashion as the size of the query regions increases. An
example is given in [4], where it is shown how the TQT can
be used to find all clusters in the vicinity of a given cluster
during the computation of the complete linkage clustering.
Another example can be found in [5] where the TQT is
used for computing the greedy triangulation, by retrieving
all relevant groups of vertices within distance < cl from a
given vertex v, where [ is the length of the latest produced
greedy edge and c is some sufficiently large constant (the
number of such groups is constant in the query region).
By keeping track of the shortest diagonal between each
pair of such groups, it is possible to determine in constant
time if a greedy diagonal of about length [ is incident to v.
Below we describe a more general way in which the TQT
can be used for the above two mentioned cases and their
alike.

The c-neighborhood of a square s, for any integer c, is
defined to be the region of all points lying within Lo
distance not greater than c-d from s, where d is the side-
length of s. The c-neighbors of a node v in TQT is the set
of all other nodes v', such that the square corresponding
to v’ lies totally in the c-neighborhood of the square corre-
sponding to v, but the square corresponding to the parent
of v' does not lie totally in this c-neighborhood. The c-
neighbors of v can be found in time O(c?) (actually faster
if the number of c-neighbors of v is small) as follows: First
we observe that if s and q are the squares that correspond
to v and a c-neighbor v’ of v, respectively, then there are
two neighboring squares represented in TQT with side-
lengths at most c times the side-length of s, such that s is
contained in one of them and q is contained in the other.
So the node that corresponds to one of those squares is
connected to v and the other to v', both by paths having
length at most [log, c]. In a similar manner we can show
that there are four or less nodes such that any c-neighbor
of v can be reached from one of them by a (parent to child)
path of length at most [log, c] + 1, and such that their
corresponding squares lie in each other’s neighborhoods
(so they are linked to each other in the TQT). (Starting
at v and going repeatedly to a parent [log, c]+1 times, we
come to a node that corresponds to a square of side-length
> 2c times the side-length of s, and the c-neighborhood of
s may be included in at most four squares of such a size.)
Thus by starting at v and traversing TQT up (towards the
root) to one of these nodes, we can find all c-neighbors by
searching the TQT downwards from these nodes, only con-
sidering those nodes whose corresponding squares overlap
with the c-neighborhood of v. In this way we can once
and for all link all nodes with their c-neighbors in total

time O(c®n), or if the parameter c varies in a from the
-192-

beginning unknown way, we can compute the c-neighbors
dynamically during the course of the algorithm.

To each node of the TQT a record of information is asso-
ciated (the record being either empty or containing some
initial information) and the node is marked not visited.
The first step is to mark all leaves visited and to (possibly)
put in their records information that. is relevant for them
(referring to the coloring example mentioned in the intro-
duction, it could be the color of the vertex in the square
which the leaf represents). For a node v we define the in-
put nodes of v to be all children of v and all c-neighbors of
these children. Now, in a bottom up fashion, whenever all
input nodes of a node v have been visited, the node v is
marked visited. At the same time v is visited, the record
that is associated with v receives information, which is a
function of the information of v and all information con-
tained in the records associated with the input nodes of v.
Thus, if ¢ is the time needed to compute such a function,
the total time is bounded by O(t - n).

In the two cases mentioned before (the complete linkage
clustering and the greedy triangulation) the two parame-
ters ¢ and t are constant. For such cases the TQT may
be particularly useful, since the total time for using it be-
comes linear.

Acknowledgment We would like to thank Professor
Giinter Rote for his helpful comments.

References

[1] D. Cheriton and R. E. Tarjan. Finding minimum spanning
trees. SIAM Journal of Computation 5(4), 1976, 47-56.

[2] D. Harel and R. E. Tarjan. Fast algorithms for finding near-
est common ancestors. SIAM Journal of Computation 13,
1984, 338-355.

[3] J. M. Keil and C. A. Gutwin. The Delaunay triangulation
closely approximates the complete Euclidean graph. Proc.
of WADS, Lecture notes in Computer Science, 1992, 47-56.

[4] D. Krznaric and C. Levcopoulos. Computing hierarchies
of clusters in linear time from the Delaunay triangula-
tion. Tech. Rep. LU-CS-TR:94-138, Dep. Comp. Sci., Lund
Univ., 1994.

[5) C. Levcopoulos and D. Krznaric. The greedy triangulation
can be computed from the Delaunay in linear time. Tech.
Rep. LU-CS-TR:94-136, Dep. Comp. Sci., Lund Univ.,
1994.

[6] F. Preparata and M. Shamos. Computational geometry:
an introduction. Springer-Verlag, 1985.

[7] H. Samet. Applications of spatial data structures. Addison-
Wesley, 1989.

[8] R. E. Tarjan. Efficiency of a good but not linear set union
algorithm. Journal of the ACM 22, 1975, 215-225.



