On the width and roundness of a set of points in the plane

Michiel Smid*

Abstract

Let S be a set of points in the plane. The width (resp.
roundness) of S is defined as the minimum width of any
slab (resp. annulus) that contains all points of S. We
give a new characterization of the width of a point set.
Also, we give a rigorous proof of the fact that either
the roundness of S is equal to the width of S, or the
center of the minimum-width annulus is a vertex of the
closest-point Voronoi diagram of S, the furthest-point
Voronoi diagram of S, or an intersection point of these
two diagrams. This proof corrects the characterization
of roundness used extensively in the literature.

1 Introduction

The problem of approximating point sets by simple ge-
ometric figures has received great attention. As an
example, assume we have a large number of mass-
manufactured circular profiles. In order to test the qual-
ity of such a profile, we take sample points from its sur-
face. The profile is acceptable if the smallest annulus
that contains all these sample points has a width that
is less than some tolerance factor. (The American Na-
tional Standards Institute recommends this measure to
be used for testing circular profiles, see Foster [5, pages
40-42] and Le and Lee [7].)

In this paper, we consider two such approximation
problems. Before we can formulate them, we need some
definitions. A slab is defined as the closed region ly-
ing between any two parallel lines in the plane, and an
annulus as the closed region lying between any two con-
centric circles of finite radius in the plane. The width of
a slab (resp. annulus) is defined as the distance between
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its bounding lines (resp. the difference of the radii of its
bounding circles).

Problem 1 Given a set S of points in the plane, com-
pute its width, which is defined as the minimum width
of any slab that contains all points of S.

A slab whose width is equal to the width of the point
set and that contains all points of S will be referred to
as an optimal slab.

Problem 2 Given a set S of points in the plane, com-
pute its roundness, which is defined as the minimum
width of any annulus that contains all points of S.

An annulus whose width is equal to the roundness of
the point set and that contains all points of S will be
referred to as an optimal annulus.

Problem 1 was considered by Houle and Toussaint [6].
They showed that there is an optimal slab that is
bounded by an antipodal pair consisting of a vertex and
an edge of the convex hull of S. Using this character-
ization, they derived an O(nlogn) time algorithm for
computing the width of a set of n points.

In this paper, we give a new characterization of the
width of a planar point set. This leads to an O(nlogn)
time algorithm for computing the width, which is simi-
lar to that of Houle and Toussaint.

Problem 2 has received considerable attention re-
cently, see [1, 2, 3, 4, 7, 8). For z € IR?, let N(z)
(resp. F(z)) denote a nearest (resp. furthest) neigh-
bor of z in S. Then the minimum-width annulus cen-
tered at z that contains all points of S has width
d(z, F(z)) — d(=, N(z)), where d(-,-) is the Euclidean
distance function. Hence, the problem is to minimize
the function d(z, F(z)) —d(z, N(z)) over all points z in
the plane.

Let NVD(S) (resp. FVD(S)) denote the closest-point
(resp. furthest-point) Voronoi diagram of S. Let G be
the subdivision obtained by superimposing these two
diagrams. Hence, the vertex set of G is the union of
the vertices of NVD(S), the vertices of FVD(S), and
the intersections of edges of these two diagrams. In
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(1,2, 3, 4], it is claimed that there is an optimal annulus
having its center at a vertex of G.

In this paper, we give the correct form of this claim
and give a rigorous proof.

Efficient algorithms for computing the roundness have
been given in [1, 2, 3, 4]; the best known running time
is O(n3/2+¢), given in [2], where € > 0 is an arbitrarily
small constant. We note that our new characterization
of the optimal annulus does not affect these bounds.

The main difficulty in the proof is that the minimum
of the function d(z, F(z)) — d(z, N(z)) may not exist
at all and instead we need to characterize its infimum.
For example, consider a set of points on the Y -axis.
For any point z in the plane, the value of d(z, F(z)) —
d(z, N(z)) is positive. If we let z go to infinity on the
positive X-axis, then d(z, F(z)) — d(z, N(z)) converges
to zero. The reader may argue that this only happens if
all points are on a line. This is, however, not the case.
In Section 3.5, we give an example of a set of points, not
all on a line, such that any annulus containing all points
has width strictly larger than one, whereas the points
are contained in a slab of width one. As it turns out,
this fact is one of the reasons why the proof of our main
result is non-trivial. It follows that we must reformulate
Problem 2 as follows.

Problem 8 Given a set S of points in the plane, com-
pute its roundness rd(S), defined as

rd(S) := inf{d(z, F(z)) — d(z, N(2)) : z € IR*}.

1.1 Summary of results

Let S be a set of points in the plane. Let G be
the subdivision obtained by superimposing the closest-
point Voronoi diagram NVD(S) and the furthest-point
Voronoi diagram FVD(S). The vertex set of G is the
union of the vertex set of NVD(S), the vertex set of
FVD(S), and the set of intersection points of non-
overlapping edge pairs (e,e’), where e € NVD(S) and
e’ € FVD(S). We assume that edges are closed.

If e is an unbounded edge of NVD(S), FVD(S),
or G, then w(e) will denote the limit of d(z, F(z)) —
d(z, N(z)), if z goes to infinity on e.

Theorem 1 1. The width of S is equal to the mini-
mum value of w(e) over all unbounded edges e of
NVD(S).

2. The width of S is equal to the minimum value of
w(e) over all unbounded edges e of FVD(S).

Theorem 2 Let width(S) denote the width of S.

1. rd(S) = min(width(S), min{d(v, F(v)) -
d(v,N(v)) : v is a vertez of G}).

2. Suppose there is an optimal slab such that one of
its bounding lines contains ezactly one point of S.
Then rd(S) < width(S).

2 Characterizing the width of a
planar point set

Let S be a set of points in the plane, and let ¢ be a
bounded or unbounded edge of NVD(S). Then, each
point z in the interior of e has exactly two nearest neigh-
bors. In fact, these neighbors are the same for each such
point . We call each of these neighbors a nearest neigh-
bor of e. The furthest neighbors of an edge of FVD(S)
are defined in a similar way.

Consider an edge e of the subdivision G. If e is (part
of) both an NVD(S)-edge and an FVD(S)-edge, then
this edge has two nearest neighbors and two furthest
neighbors. If e is (part of) an NVD(S)-edge but not
(part of) an FVD(S)-edge, then this edge has two near-
est neighbors and, since the interior of ¢ lies completely
inside a face of FVD(S), e has exactly one furthest
neighbor. Similarly, if e is (part of) an FVD(S)-edge
but not (part of) an NVD(S)-edge, then e has two fur-
thest neighbors and one nearest neighbor.

Lemma 1 Let ¢ be an unbounded edge of G. Let p
(resp. q) be a mnearest (resp. furthest) meighbor of e.
Let &6 be the distance between the orthogonal projec-
tions of p and q onto e. Then, for v € e, the function
d(v, F(v)) — d(v, N(v)) converges monotonically to § if
v moves along e to infinity. That is, using the notation
of Section 1.1, we have w(e) = §.

Proof: We assume w.l.o.g. that e is contained in the X-
axis, and that it is unbounded to the right. Let p (resp.
g) have coordinates (p;,p;) (resp. (g1,92)). Note that
P1 2 qi1, because otherwise, there is a point on e far to
the right that is closer to g than to p. Consider the func-
tion f(z) := /(= — q1)? + ¢2—/(z — p1)? + p2, for real
numbers z such that (z,0) is a point of e. Hence, f(z)
is the distance between (z,0) and its furthest neighbor
minus the distance between (z, 0) and its nearest neigh-
bor.

We analyze the behavior of f for large z. Using the
asymptotic! expansion 1+ h = 14+h/2+0(h?), (h —
0), we get \/(z — q1)® + 2 = z2—¢q1+0(1/z), (z — o).
This implies that f(z) = p1 — q1 + O(1/z), (z — o).
Hence, the limit of d(v, F(v)) — d(v, N(v)), where the
point v goes to infinity on the edge e, exists. (If e is
unbounded to the right as well, then we must have p; =
¢1- In this case, it does not matter if = goes to +o0 or
—oo. In both cases, the function f converges to zero.)

We write f(h) = O(g(k)), (h — 0), if there are positive con-
stants c and hg such that |f(h)| < c- |g(h)| for all |h| < hg. Note
that f(h) may be negative.
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We can prove that f converges monotonically by
considering its derivative for large values of z. We
have f'(z) = (z — @1)/V/(E—-a@)*+¢ - (¢ -

(x—p1)2 +p3. If f/(z) = 0, then (z — q1)%p3 =
(z — p1)%g2. Since p # g, this equation has at most two
solutions. Hence, for z large enough, the sign of f’ does
not change any more, which proves that the function f
converges monotonically to the value p; —q;. &

Theorem 1 follows from the following two lemmas.

Lemma 2 Let e be an unbounded edge of NVD(S) or
FVD(S). Then, w(e) > width(S).

Proof: Assume w.l.o.g. that e is horizontal and un-
bounded to the right. We consider the case that e is an
edge of the closest-point Voronoi diagram of S. (The
case that e is an edge of the furthest-point Voronoi di-
agram of S can be treated symmetrically.) Let p =
(p1,p2) be one of the two nearest neighbors of e. If we
walk along e far enough to the right, then the furthest
neighbor will not change any more. Let ¢ = (q1,¢3) be
this “final” furthest neighbor of e. By Lemma 1, w(e)
is equal to p; — q;.

Let I (resp. I') be the vertical line through g (resp.
p). We claim that all points-of S are contained in the
vertical slab bounded by ! and !'. This will prove that
the width of this slab, which is w(e), is at least equal to
the width of S.

Assume there is a point r € S that is to the left of
l. Then, for all points = on e that are far enough to
the right, we have d(z,r) > d(z,q), i.e., ¢ is not the
furthest neighbor of z. This is a contradiction. Hence,
all points of S are on or to the right of . By a symmetric
argument, it follows that all points of S are on or to the
left of . W

Lemma 8 1. There is an unbounded edge e of
NVD(S), such that w(e) = width(S).

2. There is an unbounded edge e of FVD(S), such that
w(e) = width(S).

Proof: Let ! and I' be two parallel lines that are at
distance width(S) such that all points of S are contained
in the slab bounded by  and I'. It is known that each of
l and I’ contains at least one point of S, and at least one
of l and I contains at least two points of S. (See [6].)

Assume w.l.o.g. that I contains two points of S. Also,
assume w.l.o.g. that ! and !’ are vertical, and that I
coincides with [ or is to the right of it.

Let p and p’ be two points on I’ such that there are
no points of S between p and p’ on I'. Let b be the
perpendicular bisector of p and p’. Finally, let g be a
point of S on ! having maximal distance to b.

Any point z on b that is sufficiently far to the right
has p and p’ as its nearest neighbors and g as its fur-
thest neighbor. Therefore, the part of b to the right

of I’ contains an unbounded edge of the closest-point
Voronoi diagram of S. Call this unbounded edge e. It
follows from Lemma 1 that w(e) is equal to the dis-
tance between ! and !’, which is exactly the width of
S. This proves the first claim. The second claim can
be proved in a similar way by observing that the part
of b to the left of [ contains an unbounded edge of the
furthest-point Voronoi diagram of S. W

The characterization of Theorem 1 leads to an (opti-
mal) O(nlogn) time algorithm for computing the width
of a set S of n points. Since this algorithm is similar to
that of Houle and Toussaint [6], we leave the details to
the reader.

3 Characterizing the roundness
of a planar point set

Let S be a set of points in the plane. If there is a
point z € IR? such that d(z, F(z)) = d(z, N(z)), then
all points of S lie on a circle with center z, and the
roundness of S is equal to zero. In this case, z is a vertex
of NVD(S) (and of FVD(S)) and, hence, Theorem 2
holds. Therefore, we make the following assumption.

Assumption 1 For all points z in the plane,

d(z, F(z)) > d(z, N(z)).

3.1 It suffices to consider points on G

Lemma 4 Let C be a circle and let = be the highest
point of C. Let y and z be points on the boundary of C
such that y is to the left of the vertical line through z
and z is to the right of this line. Let C' be a circle such
that = is on its boundary and y and z are both in ils
interior. Then the radius of C' is larger than the radius

of C.

Proof: W.lo.g., let the center of C be the origin. Let [
be the line through z and y. Let 3/ be the intersection
of | with C' such that ¥ # z. Let b be the perpendicu-
lar bisector of z and y, and let ' be the perpendicular
bisector of z and /. Let m be the line through z and z.
Let 2’ be the intersection of m with C’ such that 2’ # z.
Let ¢ be the perpendicular bisector of = and z, and let ¢
be the perpendicular bisector of z and z’. Then (i) the
center of C is the intersection of b and ¢, (ii) the center
of C' is the intersection of b’ and ¢/, (iii) b’ is parallel to
and below b, and (iv) ¢ is parallel to and below c.
Hence, the center of C' is below both b and ¢. Since
the angle made by b (resp. ¢) with the positive X-axis
is in the interval (x/2,x) (resp. (0,%/2)), the center
of C' is below the center of C. This proves that the
distance between z and the center of C’ is larger than
the distance between z and the center of C. Since z is
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on the boundary of both circles, this implies that the
radius of C’ is larger than that of C. B

Lemma 5 We have 7d(S) = inf{d(v,F(v)) —
d(v,N(v)) : v € G}, where v € G means that v is a
vertez of G or a point on an edge of G.

Proof: Let z be a point of IR? that is in the interior of
a face of G. That is, ¢ ¢ G. We will prove that there is
a vertex v of G or a point v on an edge of G such that
d(v, F(v)) — d(v, N(v)) < d(z, F(z)) — d(z, N(z)). This
will prove the lemma.

Let p (resp. g) be the nearest (resp. furthest) neighbor
of . Assume w.l.o.g. that g is vertically below z. (That
is, ¢ is on the ray emanating downwards from z.)

Let C be the circle with center g that contains = on
its boundary. Since p is the nearest neighbor of z, p is
above the horizontal line through gq.

Let f be the face of G that contains z. Start walking
from z along the boundary of C in counterclockwise
order, and let y be the point on the boundary of f that
is encountered.

Why does y exist? Let z’ be the lowest point of C.
Then, g is closer to z' than p is. Hence, p is not the
nearest neighbor of z/. As a result, while walking from
z to z’ along the left boundary of C, we must cross the
boundary of the face f. This proves that y exists.

Similarly, let z be the point on the boundary of f that
we encounter by walking along C in clockwise order,
starting at . Note that y € G and z € G.

The claim is that d(y,F(y)) — d(y, N(y)) <
d(z, F(z)) — d(=, N(=)), or d(z,F(z)) — d(z,N(z)) <
d(z, F(2)) - d(z, N (z)).

Note that N(z) = N(y) = N(z) = p and F(z) =
F(y) = F(z) = q. To prove the claim, we assume that
d(y,9) - d(v, p) > d(z,9)—d(=z, p) and d(z,q) - d(z,p) >
d(z,q) — d(z,p). Since d(z,q) = d(y,q) = d(z,q), it
follows that d(z,p) > d(y,p) and d(z, p) > d(z, p).

Let C’ be the circle with center p that contains z on
its boundary. Then, y and z are both contained in the
interior of C'. Hence, by Lemma 4, the radius of C’' is
larger than that of C, i.e., d(z,p) > d(z,q). Thisis a
contradiction, because p is the nearest neighbor of z. B

3.2 Considering points in the interior of
edges of G

Lemma 6 Let e be any edge of G, and let v be a point
in the interior of e. Then there is a point w on e such

that d(w, F(w))—d(w, N(w)) < d(v, F(v))—d(v, N(v)).

Proof: We can assume w.l.o.g. that e is contained in
the X-axis, and that v is the origin.

If e is (part of) an edge of NVD(S), then the interior
of e has exactly two nearest neighbors. Similarly, if e
is (part of) an edge of FVD(S), then the interior of e

has exactly two furthest neighbors. Note that e can be
(part of) an edge of both NVD(S) and FVD(S), since
edges of NVD(S) and FVD(S) can overlap.

Let p = (p1,p2) (resp. ¢ = (q1,42)) be a nearest (resp.
furthest) neighbor of e. We claim that p and q are not
both contained in the X-axis. To prove this, assume
that e is (part of) an edge of NVD(S). Let p' # p be
the “other” nearest neighbor of e. Then e is contained
in the perpendicular bisector of p and p’, which is the
X-axis. Hence, since p # p/, it follows that p does not
lie on the X-axis. If e is (part of) an edge of FVD(S),
then it follows in a symmetric way that g does not lie on
the X-axis. Of course, if e is both (part of) an NVD(S)-
edge and an FVD(S)-edge, then both p and ¢q do not lie
on the X-axis

Because v is not a vertex of G, there is a circle v
centered at v, having a positive radius, such that any
point inside v and on e has p as its nearest neighbor and

q as its furthest neighbor.
ViE-a)+q -

Consider the function f(z) :=
V/(z — p1)? + p3. Then for any real number z such that
|| is small enough, the point w := (z,0) is contained
in v, and f(z) = d(w, F(w)) — d(w, N(w)). Hence, it
suffices to show that there is a real number z, such
that |z| is small and f(z) < f(0). We will prove
this by considering the derivative of f for small val-
ues of z. Let ||g|| denote the distance between g and

the origin, ie., |lg]| = v/¢? +¢3. We have f'(z) =
-a)/VeE-a)l+d - (z-p)/Vz-p) + 53
Since /(= — P +4 = llall(1 - zai/Illl* + O(=*)),
(z — 0), we have for z — 0,
T—q _ T—q
Vie-a)+q¢ a1 -=za/ldl?+0(=?)

Using the asymptotic expansion 1/(1 - k) = 1+ h +
O(h?), (h — 0), where h = zq/||q||* + O(z?), we get

P @ 1 1 g P
fiz) = ——--——+(—-—-—-————-—-—-—+-—— z
@ = el Tl el 7ol TalF T el

+0(z?), (z — 0).

We consider three cases.

Case 1: p1/||p|| > ¢1/|lgll- Then, for all z such that |z|
is small enough, f'(z) > 0. Hence, for ¢ < 0 and |z|
small enough, we have f(z) < £(0).

Case 2: p1/||pll < @1/|lgl|. Then, for z > 0 and |z|
small enough, we have f(z) < £(0).

Case 3: p1/||p|| = ¢1/llg|l. We know that p, and g; are
not both equal to zero. This implies that p, # 0. We

have
' 1 P 32 .o,
fi=)= (upu nqn) (npw )w+0( ) ?1))

By Assumption 1, we have d(v,q) > d(v,p), i.e., ||g|| >
llpll, implying that 1/|jp|| - 1/llgl| > 0. Also, p} < p} +

- 196 -



p3 = ||p||?, implying that p?/||p||> — 1 < 0. Hence, the
coefficient of z in (1) is negative. It follows that for
z > 0 and |z| small enough, we have f(z) < f(0). This
completes the proof of the lemma. B

3.3 The proof of the first part of Theo-
rem 2

If all points of S lie on a line, then rd(S) = width(S),
and the first part of Theorem 2 holds. Therefore, we
assume from now on that not all points of S lie on a
line. This implies that G does not contain edges that
are unbounded in two directions.

Recall that we assume edges of G to be closed. Hence,
if e is a bounded edge, then its two endpoints, which are
vertices of G, belong to e. Similarly, if e is an unbounded
edge, then its one endpoint is a vertex of G, and it
belongs to e.

For each unbounded edge e of G, we do the follow-
ing. We cut e into two parts eo and ey, such that (i)
€o is closed and bounded, and (ii) eq is closed and un-
bounded, and, for v € ey, the function d(v, F(v)) —
d(v, N(v)) is monotone if v moves along e, to infinity.

Let Ej be the union of the set of all bounded edges of
G, and the set of all edge parts eg, where e ranges over
the unbounded edges of G. Let E; be the set consisting
of all edge parts e, where e ranges over all unbounded
edges of G such that the function d(v, F(v))—d(v, N(v))
is increasing if v moves along e, to infinity. (Later,
in Case 2 of the proof of Section 3.4, we will see that
the set E; need not be empty.) Finally, let E; be
the set consisting of all edge parts e.,, where e ranges
over all unbounded edges of G such that the function
d(v, F(v))—d(v, N(v)) is non-increasing if v moves along
ex to infinity.

Then, Lemma 5 implies that the roundness of S is
equal to the minimum of

inf{d(v, F(v)) — d(v, N(v)) : v € edge of E3}, (2)
inf{d(v, F(v)) — d(v, N(v)) : v € edge of E;}, (3)
inf{d(v, F(v)) — d(v, N(v)) : v € edge of Ea}. (4)

Since the function d(v, F(v))—d(v, N(v)) is continous,
and the set E; is closed and bounded, we can replace
(2) by

min{d(v, F(v)) — d(v, N(v)) : v € edge of Ep}. (5)

Consider an edge part ey, of the set E;. Let e be the
corresponding edge of G, and consider the bounded part
eo of e. It follows from the definition of E; that

inf{d(v, F(v)) — d(v, N(v)) : v € 0} <
inf{d(v, F(v)) — d(v, N(v)) : v € exc }.

Hence, the value of (3) is at least equal to that of (5).

Consider an edge part ey, of the set E5. Let e be
the corresponding edge of G. We have inf{d(v, F(v)) —
d(v,N(v)) : v € e} = w(e). Then, Lemma 2 implies
that the value of (4) is at least equal to the width of S.

By Lemma 3, there is an unbounded edge e in G such
that w(e) = width(S). Then, the definition of roundness
implies that rd(S) < width(S).

Hence, at this moment, we know that the roundness
of S is equal to the minimum of the values (4) and (5),
that the value of (4) is at least equal to the width of
S, and that the roundness of S is at most equal to the
width of S. It follows that the roundness of S is equal
to the minimum of (i) min{d(v, F(v)) — d(v, N(v)) :
v € edge of E}, and (ii) the width of S.

Now we can complete the proof of the first part of
Theorem 2. Let e be an edge or edge part of the set Ej.

First assume that e is a bounded edge of G. If vis a
point in the interior of e, then we know from Lemma 6
that there is a point w on e such that d(w, F(w)) —
d(w, N(w)) < d(v, F(v)) — d(v, N(v)). Hence, we can
conclude from the definition of roundness that rd(S) <
d(v, F(v)) — d(v, N(v)).

Next assume that e is part of an unbounded edge of
G. Then, e has two endpoints, and exactly one of these
is a vertex of G. Let p be this vertex. If v is a point on e
such that v # p, then we know from Lemma 6 that there
is a point w on e such that d(w, F(w)) — d(w, N(w)) <
d(v, F(v)) — d(v, N(v)). Again, we can conclude that
rd(S) < d(v, F(v)) — d(v, N(v)).

This proves that the roundness of S is equal to the
minimum of

1. mi(r;{d(v, F(v)) — d(v,N(v))

: v is a vertex of G},

2. the width of S,

which is exactly the claim in the first part of Theorem 2.

3.4 The proof of the second part of The-
orem 2

Suppose there is an optimal slab such that one of its
bounding lines contains exactly one point of S. We will
prove that rd(S) < width(S).

Let ! and ! be the bounding lines of an optimal slab.
Assume that ! contains exactly one point, say p, of S.
Assume w.l.o.g. that [ is the Y-axis, and that I’ is to
the right of I. It follows from [6] that we may assume
that I’ contains at least two points of S. There are two
possible cases.

Case 1: !’ does not contain a point of S whose Y-
coordinate is equal to p’s Y-coordinate.

Let p have coordinates (p;, p2). Let g be a point of S
that lies on I’, and that is closest to the line Y = p,.

-197 -



For any positive real number z, let C, (resp. C.) be
the circle with center (z, p2) that contains p (resp. g) on
its boundary.

If z is large enough (but still finite), then all points of
S are inside or on the boundary of C,: This is clearly
true for p. Let r be any point of S\ {p}. Then r is
to the right of I. Let 7’ be the intersection between the
line Y = p; and the perpendicular bisector of p and r.
If (z, p2) is to the right of '/, then r is contained in C;.
Let r be a point of S\ {p} for which +' has maximal
X-coordinate. Then for each point (z,p;) to the right
of 7, all points of S are inside or on the boundary of
C:. In a similar way, it can be proved that there is a
point 7"’ on the line Y = p, such that for each point
(z,p2) to the right of r”, all points of S are outside or
on the boundary of C..

Note that the radius of C; is equal to z, and the
radius of C; is strictly larger than the distance between
(=,p2) and the line I'. It follows that there is a finite-
radius annulus containing all points of S that has width
less than the distance between I and I’. This proves that
rd(S) < width(S).

Case 2: I’ contains a point of S whose Y-coordinate is
equal to p’s Y-coordinate.

Let p have coordinates (p1, p2). Let g be the point of S
on I’ with Y-coordinate p,, and let ¢ have X-coordinate
¢1. Let ¢’ be another point of S on I’ such that the line
segment gq' does not contain points of S. We assume
w.lo.g. that ¢’ is below g, and that the perpendicular
bisector of ¢ and ¢’ is the X-axis. Hence, ¢’ has coordi-
nates (g1, —p2).

For any real number z > ¢, let C; (resp. C.) be
the circle with center (z,0) that contains p (resp. ¢) on
its boundary. In a similar way as in Case 1, it can be
shown that if z is large enough (but still finite), then all
points of S are inside or on the boundary of C,. Also,
if z is large enough (but still finite), then all points
of S are outside or on the boundary of C’. The ra-
dius of C; (resp. C;) is equal to v/(z — p1)? + p2 (resp.
V(2 — 1) + p2). We will prove that the difference of
these radii is strictly less than g; —p, provided z is large
enough. This will prove that there is a finite-radius an-
nulus containing all points of S that has width less than
the distance between ! and I. Hence, rd(S) < width(S).

We analyze the asymptotic behavior of the radii for
large values of z. Using elementary asymptotic meth-
ods, it follows that, for large z, the difference of the
radii of C; and C, is equal to

@ - P+ (b1~ /e + 0(1/2%), (= — o).

Since p; —¢q1 < 0, it follows that this difference is strictly
less than g; — p; for z large enough. This completes the
proof of the second part of Theorem 2.

3.5 An example

In Section 1, we already mentioned that for a set S of
points on a line we have rd(S) = width(S). We now
give an example of a point set, not all on a line, for
which rd(S) = width(S) and any finite-radius annulus
containing the set has width larger than width(S). Note
that by Theorem 2, each bounding line of each optimal
slab must then contain at least two points.

Let p = (0,0), ¢ = (0,2), r = (1,1), s = (1,3), t =
(1/2,-5), and u = (1/2,10). Let S be a set of points
that contains all these six points, such that all other
points are strictly between the lines X = 0 and X = 1.

Lemma 7 Any finite-radius annulus containing all
points of S has width larger than one.

Lemma 8 rd(S) = width(S) = 1.
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